参葛补肾胶囊中葛根素和淫羊藿苷小鼠体内动力学脑海马分布及其相关蛋白动态表达的相关性研究*

王卫华, 雷帆, 李成功, 孙虹, 胡时先, 邢东明, 任宾, 郝娟, 杜力军

药物分析杂志 ›› 2024, Vol. 44 ›› Issue (11) : 1909-1922.

PDF(7831 KB)
PDF(7831 KB)
药物分析杂志 ›› 2024, Vol. 44 ›› Issue (11) : 1909-1922. DOI: 10.16155/j.0254-1793.2024-0423
生物检定·代谢分析

参葛补肾胶囊中葛根素和淫羊藿苷小鼠体内动力学脑海马分布及其相关蛋白动态表达的相关性研究*

  • 王卫华1,2, 雷帆1, 李成功3, 孙虹4, 胡时先3, 邢东明1, 任宾3, 郝娟3, 杜力军1**
作者信息 +

Study on the pharmacokinetics and the correlation between distribution of puerarin-icariin and dynamic expression of proteins in mouse hippocampus after oral administration of Shenge Bushen capsules*

  • WANG Wei-hua1,2, LEI Fan1, LI Cheng-gong3, SUN Hong4, HU Shi-xian3, XING Dong-ming1, REN Bin3, HAO Juan3, DU Li-jun1**
Author information +
文章历史 +

摘要

目的:研究参葛补肾胶囊中葛根素和淫羊藿苷在小鼠血浆及脑内海马核团动力学和海马抑郁症相关蛋白表达的变化,探讨参葛补肾胶囊体内药代动力学变化及其与海马相关蛋白表达的相关性。方法:运用UPLC-MS/MS-ABSCIEX QTRAP 5500三重四极杆串联线性离子阱质谱方法,采用Waters ACQUITY HSS T3(50 mm×2.1 mm, 1.8 μm)色谱柱,以0.05%甲酸水-含0.05%甲酸的乙腈甲醇溶液(1∶1)为流动相梯度洗脱,流速0.2 mL·min-1,采用电喷雾离子源,在负离子模式下对正常小鼠灌胃后不同时间点的血浆及海马中葛根素、淫羊藿苷测试分析。用Western blot方法表达海马蛋白。结果:口服给药后血浆和海马均检测到葛根素和淫羊藿苷,其中血浆葛根素半衰期(t1/2)为2.45 h, 淫羊藿苷t1/2为3.59 h;海马葛根素t1/2为4.37 h,淫羊藿苷t1/2为8.5 h。葛根素血浆浓度占给药量的27.3%,淫羊藿苷血浆浓度占给药量的1.34%。海马葛根素占吸收入血葛根素的2.47%,海马淫羊藿苷占吸收入血淫羊藿苷的73.56%。给药后海马神经元限制性沉默因子(NRSF)、脑源性神经营养因子(BDNF)及其下游原肌球蛋白相关激酶受体B(TrkB)、溶质载体转运体6a4(SLC6A4)、糖皮质激素受体(GR)、μ阿片受体(MOR)等蛋白表达出现不同程度的上调,其中淫羊藿苷与NRSF表达呈现明显负相关,葛根素与BDNF-TrkB、MOR表现出明显正相关,GR则无明显相关性。结论:小鼠口服参葛补肾胶囊后,葛根素和淫羊藿苷均能进吸收进入血液且分布于海马,淫羊藿苷较葛根素更易透过血脑屏障并在海马分布。海马相关蛋白表达与葛根素、淫羊藿苷浓度变化呈现一定的相关性,提示2个成分的作用靶点与这些蛋白有关。本研究为参葛补肾胶囊药代动力学及其抗抑郁作用的物质基础提供了重要的实验依据。

Abstract

Objective: To study the dynamic changes of puerarin and icariin in plasma and hippocampus of mice, to observe the changes of depression-related protein expression in hippocampus, and to explore the pharmacokinetic changes of Shenge Bushen capsules (SBC) and its correlation with the changes of hippocampus-related protein expression. Methods: Puerarin and icariin in plasma and hippocampus of normal mice were analyzed by UPLC-MS/MS-ABSCIEX QTRAP 5500 triple quadrupole series linear ion trap mass spectrometry method using Waters Acquity HSS T3 (50 mm×2.1 mm, 1.8 μm) column with 0.05% formic acid water-acetonitrile-methanol (1∶1) containing 0.05% formic acid as mobile phases gradient elution at a flow rate of 0.2 mL·min-1 and electrospray ion source under negative ion model. The proteins in hippocampus were expressed by Western blot assay. Results: Puerarin and icariin were detected in plasma and hippocampus after the oral administration, including plasma puerarin t1/2 2.45 h, icariin t1/2 3.59 h, hippocampus puerarin t1/2 4.37 h and icariin t1/2 8.5 h. The plasma concentration of puerarin accounts for 27.3% and that of icariin accounts for 1.34% of the dosage taken. Puerarin in hippocampus accounts for 2.47% of puerarin absorbed into blood, while icariin in hippocampus accounts for 73.56% of icariin absorbed into blood. The expressions of restrictive silencing factor (NRSF), brain-derived neurotrophic factor (BDNF) and its downstream protein tyrosine kinase B (TrkB), solute carrier transporter 6a4 (SLC6A4), glucocorticoid receptor (GR) and μ opioid receptor (MOR) in hippocampus were all up-regulated after SBC administration, in which icariin was negatively correlated with NRSF expression, puerarin was positively correlated with BDNF-TrkB and MOR, and GR had no obvious correlation with the proteins. Conclusions: Puerarin and icariin can be absorbed into the blood and distributed in the hippocampus after oral administration of SBC in mice. Icariin was easier to pass through the blood-brain barrier and distribute in the hippocampus than puerarin. The expression of hippocampus-related proteins was related to the changes of puerarin and icariin concentrations, suggesting that the targets of the two components as well as SBC were related to these proteins. This study provides an important experimental basis for the pharmacokinetic study of SBC and also provides a material basis of its antidepressant effect.

关键词

葛根素 / 淫羊藿苷 / 药代动力学 / 海马 / 蛋白表达 / 超高效液相色谱-质谱联用 / 参葛补肾胶囊 / 抗抑郁

Key words

puerarin / icariin / pharmacokinetics / hippocampus / protein expression / UPLC-MS/MS / Shenge Bushen capsules / antidepression

引用本文

导出引用
王卫华, 雷帆, 李成功, 孙虹, 胡时先, 邢东明, 任宾, 郝娟, 杜力军. 参葛补肾胶囊中葛根素和淫羊藿苷小鼠体内动力学脑海马分布及其相关蛋白动态表达的相关性研究*[J]. 药物分析杂志, 2024, 44(11): 1909-1922 https://doi.org/10.16155/j.0254-1793.2024-0423
WANG Wei-hua, LEI Fan, LI Cheng-gong, SUN Hong, HU Shi-xian, XING Dong-ming, REN Bin, HAO Juan, DU Li-jun. Study on the pharmacokinetics and the correlation between distribution of puerarin-icariin and dynamic expression of proteins in mouse hippocampus after oral administration of Shenge Bushen capsules*[J]. Chinese Journal of Pharmaceutical Analysis, 2024, 44(11): 1909-1922 https://doi.org/10.16155/j.0254-1793.2024-0423
中图分类号: R 917   

参考文献

[1] HUDA A,ERIC JN. The neurobiology of stress: vulnerability, resilience, and major depression [J]. Proc Natl Acad Sci USA, 2023,120 (49): e2312662120
[2] 苏健婷,韦再华,高燕琳,等. 2010年北京市抑郁症疾病负担研究[J]. 首都公共卫生, 2018,12(1): 34
SU JT,WEI ZH,GAO YL,et al. Disease burden of depressive disorders in Beijing,2010 [J]. Cap J Public Health, 2018, 12(1): 34
[3] SHOKRI-MASHHADI N, DARAND M, ROUHANI MH, et al. Effects of melatonin supplementation on BDNF concentrations and depression: a systematic review and meta-analysis of randomized controlled trials [J]. Behav Brain Res, 2023, 436: e114083
[4] MONCRIEFF J, COOPER RE, STOCKMANN T, et al. The serotonin theory of depression: a systematic umbrella review of the evidence [J]. Mol Psychiatry, 2023, 28 (8): 3243
[5] THOMPSON SM, KALLARACKAL AJ, KVARTA MD, et al. An excitatory synapse hypothesis of depression [J]. Trends Neurosci, 2015, 38 (5): 279
[6] TEOH CXW, THNG M, LAU S, et al. Dry mouth effects from drugs used for depression, anxiety, schizophrenia and bipolar mood disorder in adults: systematic review [J]. Bjpsych Open, 2023, 9 (2): A63
[7] COVINGTON HE, VIALOU V, NESTLER EJ. From synapse to nucleus: novel targets for treating depression [J]. Neuropharmacology, 2010, 58 (4-5): 683
[8] BOLCHAKOV AP, ROZOV AV. Mechanisms of facilitation and depression in CNS synapses: presynaptic and postsynaptic components [J]. Neurochem J, 2014, 8 (4): 238
[9] VON WERNE BAES C, DE CARVALHO TOFOLI SM, MARTINS CMS, et al. Assessment of the hypothalamic-pituitary-adrenal axis activity: glucocorticoid receptor and mineralocorticoid receptor function in depression with early life stress-a systematic review [J]. Acta Neuropsychiatr, 2012, 24 (1): 4
[10] ANACKER C, ZUNSZAIN PA, CARVALHO LA, et al. The glucocorticoid receptor: pivot of depression and of antidepressant treatment [J]. Psychoneuroendocrinology, 2011, 36 (3): 415
[11] YU X, WANG X, LEI F, et al. The antidepressive effect of the complex consisting of Radix Pseudostellariae, Radix Pueraria and Herba Epimedii: the involvement of NRSF/NRSE-TPH2 signaling [J]. J Chin Pharm Sci, 2021, 30 (1): 27
[12] 潘平康,张超,吴海琴,等. 葛根素对大鼠脑缺血后海马中EPO和STAT-5表达的影响 [J]. 卒中与神经疾病, 2013, 20 (3): 137
PAN PK, ZHANG C, WU HQ, et al. Effects of puerarin on the expression of erythropoietin and STAT-5 in the hippocampus of cerebral ischemia injuryed in rat[J]. Stroke Nerv Dis, 2013, 20 (3): 137
[13] 夏友华. 葛根素治疗脑梗死的临床效果 [J]. 中国农村卫生, 2020, 12 (12): 31
XIA YH. Clinical effect of puerarin on cerebral infarction[J]. Chin Rural Health, 2020, 12 (12): 31
[14] 史文珍,王倩,熊婧,等. 葛根素改善卒中后抑郁大鼠行为学的研究 [J]. 临床医学研究与实践, 2019, 4 (10): 1
SHI WZ, WANG Q, XIONG J, et al. Study of puerarin on behaviour of rats with post-stroke depression[J]. Clin Res Pract, 2019, 4 (10): 1
[15] GAO LN, YAN M, ZHOU L, et al. Puerarin alleviates depression-like behavior induced by high-fat diet combined with chronic unpredictable mild stress via repairing TLR4-induced inflammatory damages and phospholipid metabolism disorders[J]. Front Pharmacol, 2021,12:e767333
[16] 张聪,胡楚璇,李穗华,等. 葛根素对慢性不可预知温和刺激大鼠抑郁行为的影响及其机制 [J]. 药学学报, 2018, 53 (2): 220
ZHANG C, HU CX, LI SH, et al. Anti-depressant effects of puerarin on depression induced by chronic unpredicted mild stress in rats[J]. Acta Pharm Sin, 2018, 53 (2): 220
[17] LIU R, LI Y, WANG Z, et al. Puerarin mitigates symptoms of depression in ovariectomized female rats by regulating hippocampal cAMP-CREB-BDNF signaling pathway[J]. Trop J Pharm Res, 2021, 20 (7): 1403
[18] SONG X, WANG W, DING S, et al. Puerarin ameliorates depression-like behaviors of with chronic unpredictable mild stress mice by remodeling their gut microbiota[J]. J Affective Disord, 2021, 290: 353
[19] LIU B, XU C, WU X, et al. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation[J]. Neuroscience, 2015, 294:193
[20] WU X, ZHANG X, SUN L, et al. Icariin prevents depression-like behaviors in chronic unpredictable mild stress-induced rats through Bax/cytoplasm C/caspase-3 axis to alleviate neuronal apoptosis[J]. Cell Mol Biol, 2023, 69 (7): 196
[21] 张聪,卢慧勤,胡楚璇,等. 淫羊藿苷对慢性不可预知温和刺激诱导的大鼠抑郁行为和神经递质水平的影响 [J]. 中国药学杂志, 2018, 53 (15): 1280
ZHANG C,LU HQ,HU CX, et al. Effect of icariin on behavior and monoamine neurotransmitters in rats with depression induced by chronic unpredicted mild stress[J]. Chin Pharm J, 2018, 53 (15): 1280
[22] DI X, WAN M, BAI YN, et al. Exploring the mechanism of Icariin in the treatment of depression through BDNF-TrkB pathway based on network pharmacology[J]. Naunyn Schmiedebergs Arch Pharmacol, 2024,397 (1): 463
[23] GONG MJ, HAN B, WANG SM, et al. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats[J]. J Pharm Biom Anal, 2016, 123: 63
[24] CAO LH, QIAO JY, HUANG HY, et al. PI3K-AKT signaling activation and icariin: the potential effects on the perimenopausal depression-like rat model[J]. Molecules, 2019, 24 (20): e3700
[25] ZENG NX, LI HZ, WANG HZ, et al. Exploration of the mechanism by which icariin modulates hippocampal neurogenesis in a rat model of depression[J]. Neural Regen Res, 2022, 17 (3): 632
[26] KONG H, WANG X, SHI R, et al. Pharmacokinetics and tissue distribution kinetics of puerarin in rats using indirect competitive ELISA[J]. Molecules, 2017, 22 (6): e939
[27] JUNG HR, KIM SJ, HAM SH, et al. Simultaneous determination of puerarin and its active metabolite in human plasma by UPLC-MS/MS: application to a pharmacokinetic study[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 971: 64
[28] ZHANG G, JI J, SUN M, et al. Comparative pharmacokinetic profiles of puerarin in rat plasma by UHPLC-MS/MS after oral administration of pueraria lobata extract and pure puerarin[J]. J Anal Methods Chem, 2020. doi:10.1155/2020/e4258156
[29] LIAO ZG, LIANG XL, ZHU JY, et al. Transport properties of puerarin and effect of extract of Radix Angelicae Dahuricae on puerarin intestinal absorption using in situ and in vitro models[J]. Phytother Res, 2014, 28(9):1288
[30] YANG B, DU S, LU Y, et al. Influence of paeoniflorin and menthol on puerarin transport across MDCK and MDCK-MDR1 cells as blood–brain barrier in vitro model[J]. J Pharm Pharmacol, 2018, 70(3): 349
[31] WU JY, LI YJ, YANG L, et al. Borneol and a-asarone as adjuvant agents for improving blood-brain barrier permeability of puerarin and tetramethylpyrazine by activating adenosine receptors[J]. Drug Deliv, 2018, 25 (1): 1858
[32] LIU W, LI X, LI N, et al. UPLC-MS/MS method for icariin and metabolites in whole blood of C57 mice: development, validation, and pharmacokinetics study[J]. Front Pharmacol, 2023, 14: e1195525
[33] 张双庆,何梦洁,黄振武. 超高效液相色谱-串联质谱法研究淫羊藿苷在大鼠体内药代动力学 [J]. 卫生研究, 2016, 45(5): 807
ZHANG SQ,HE MJ,HUANG ZW. UPLC-MS/MS for the pharmacokinetics of icariin in rats[J]. Health Res, 2016, 45(5): 807
[34] 叶丽卡,陈济民,刘四海,等. 淫羊藿苷在大鼠体内的药代动力学 [J]. 中国药学杂志, 1999,34 (1): 35
YE LK, CHEN JM, LIU SH, et al. Pharmacokinetics of icariin in rats[J]. Chin Pharm J, 1999, 34(1): 35
[35] XU S, YU J, ZHAN J, et al. Pharmacokinetics, tissue distribution, and metabolism study of icariin in rat[J]. Biomed Res Int, 2017, 2017: e4684962
[36] 王敏,谷元,周宇,等. 淫羊藿苷元在大鼠体内的血浆动力学和组织分布研究 [J]. 中草药, 2021, 52(10): 3030
WANG M, GU Y, ZHOU Y, et al. Pharmacokinetics and tissue distribution of icaritin after intragastric administration in rats[J]. Chin Tradit Herb Drugs, 2021, 52(10): 3030
[37] 慈小燕,孙英辉,武卫党,等. 淫羊藿苷元的肠道跨膜转运机制研究 [J]. 中草药, 2022, 53 (9): 2747
CI XY, SUN YH, WU WD, et al. Study on transmembrane transport mechanism of icariin in intestine[J]. Chin Tradit Herb Drugs, 2022, 53 (9): 2747
[38] 梁媛, 葛若衡, 舒畅. 基于LC-MS/MS方法的大鼠血浆中舒必利的血药浓度检测及药代动力学研究 [J]. 中南药学, 2023, 21 (11): 2875
LIANG Y, GE RH, SHU C. Determination of sulpiride concentration in rat plasma and pharmacokinetics by LC-MS/MS [J]. Cent South Pharm, 2023, 21 (11): 2875
[39] 李俊,余冬,王木兰,等. 基于线粒体氧化呼吸链相关调节基因探讨二甲双胍对皮质酮致小鼠抑郁样行为的作用[J]. 中国比较医学杂志, 2023, 33 (8): 95
LI J, YU D, WANG ML, et al. Effect of metformin on corticosterone-induced depression-like behavior in mice involves genes of the mitochondrial respiratory chain [J]. Chin J Comp Med, 2023, 33 (8): 95
[40] YUAN Z, LU X, LEI F, et al. Novel effect of p-Coumaric acid on hepatic lipolysis: inhibition of hepatic lipid-droplets [J]. Molecules, 2023, 28 (12): e 4641
[41] SOGA T, NAKAJIMA S, KAWAGUCHI M, et al. Repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) in social stress and depression [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 104: e110053
[42] WANG XF, YU PP, LU PH. NRSE.NRSF and their modulatory effects on the expression of neuronal-specific genes[J]. Prog Biochem Biophys, 2005, 32 (7): 595
[43] THOMPSON R, CHAN C. NRSF and its epigenetic effectors: new treatments for neurological disease [J]. Brain Sci, 2018, 8 (12): e226
[44] SONG Z, ZHAO D, ZHAO H, et al. NRSF: an angel or a devil in neurogenesis and neurological diseases [J]. J Mol Neurosci, 2015, 56 (1): e131
[45] PISANI A, PACIELLO F, DEL VECCHIO V, et al. The role of BDNF as a biomarker in cognitive and sensory neurodegeneration [J]. J Pers Med, 2023, 13 (4): e652
[46] DU X, WU YC, HILL RA, et al. BDNF-TrkB signaling as a therapeutic target in neuropsychiatric disorders [J]. J Recept Ligand Channel Res, 2014, 7: 61
[47] GUO W, NAGAPPAN G, LU B. Differential effects of transient and sustained activation of BDNF-TrkB signaling [J]. Dev Neurobiol, 2018, 78 (7): 647
[48] CORREIA AS, CARDOSO A, VALE N. BDNF unveiled: exploring its role in major depression disorder serotonergic imbalance and associated stress conditions [J]. Pharmaceutics, 2023, 15 (8): e2081
[49] JIN W. Regulation of bdnf‐trkb signaling and potential therapeutic strategies for Parkinson’s disease [J]. J Clin Med, 2020, 9 (1): e257
[50] TEJEDA GS, DIAZ-GUERRA M. Integral characterization of defective BDNF/TrkB signalling in neurological and psychiatric disorders leads the way to new therapies [J]. Int J Mol Sci, 2017, 18 (2): e268
[51] LIU Y, HU Z, WANG J, et al. Puerarin alleviates depressive-like behaviors in high-fat diet-induced diabetic mice via modulating hippocampal GLP-1R/BDNF/TrkB signaling [J]. Nutr Neurosci, 2023, 26 (10): 997
[52] HONG M. Biochemical studies on the structure-function relationship of major drug transporters in the ATP-binding cassette family and solute carrier family [J]. Adv Drug Deliv Rev, 2017, 116: 3
[53] MORIYA Y, KASAHARA Y, SHIMADA M, et al. Role for μ-opioid receptor in antidepressant effects of δ-opioid receptor agonist KNT-127[J]. J Pharmacol Sci, 2023,151 (3): 135
[54] REN F, MA Y, ZHU X, et al. Pharmacogenetic association of bi- and triallelic polymorphisms of SLC6A4 with antidepressant response in major depressive disorder [J]. J Affective Disord, 2020, 273: 254
[55] RHEN T, CIDLOWSKI JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs [J]. N Engl J Med, 2005, 353 (16): 1711
[56] SIONOV RV, KFIR S, ZAFRIR E, et al. Glucocorticoid-induced apoptosis revisited: a novel role for glucocorticoid receptor translocation to the mitochondria [J]. Cell Cycle, 2006, 5 (10): 1017
[57] LU NZ, CIDLOWSKI JA. Glucocorticoid receptor isoforms generate transcription specificity [J]. Trends Cell Biol, 2006, 16 (6): 301
[58] HERMAN JP, SEROOGY K. Hypothalamic-pituitary-adrenal Axis, glucocorticoids, and neurologic disease [J]. Neurol Clin, 2006, 24 (3): 461
[59] WANG Y, ZHUANG Y, DIBERTO JF, et al. Structures of the entire human opioid receptor family [J]. Cell, 2023, 186 (2):413
[60] SHIRAKI A, SHIMIZU S. The molecular associations in clathrin-coated pit regulate β-arrestin-mediated MAPK signaling downstream of μ-opioid receptor [J]. Biochem Biophys Res Commun, 2023, 640:64
[61] GAMBLE MC, WILLIAMS BR, SINGH N, et al. Mu-opioid receptor and receptor tyrosine kinase crosstalk: implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward [J]. Front Syst Neurosci, 2022, 16: e1059089
[62] MORIYA Y, KASAHARA Y, SHIMADA M, et al. Role for μ-opioid receptor in antidepressant effects of δ-opioid receptor agonist KNT-127 [J]. J Pharmacol Sci, 2023,151 (3):135
[63] 卢弘, 李敏, 邢东明, 等. 对中药复方药代动力学研究中血药浓度测定方法的评述与思考[J]. 世界科学技术-中医药现代化, 2000, 3(4): 22
LU H, LI M, XING DM, et al. Comment on the test method of plasma concentration in pharmacokinetics of Chinese herbal compound[J]. World Sci Technol Mod Tradit Chin Med, 2000, 3(4): 22
[64] 杜力军, 邢东明, 炎彬, 等. 对葛根素与葛根黄酮体内动力学关系的探讨-兼论中药药代动力学的研究方法[J]. 世界科学技术-中医药现代化, 2004, 6(6): 26
DU LJ, XING DM, YAN B, et al. Exploration of relationship between in vivo dynamics of puerarin and flovone of root of Kutzu vine and a discussion on study method of pharmacokinetics of Chinese medicines [J]. World Sci Technol Mod Tradit Chin Med, 2004,6 (6): 26

基金

* 国家“重大新药创制”科技重大专项(2018ZX09731020)

PDF(7831 KB)

293

Accesses

0

Citation

Detail

段落导航
相关文章

/