质量分析

基于高效液相色谱指纹图谱结合化学模式识别及多成分测定的南非叶质量评价研究*

  • 杨婧 ,
  • 覃华亮 ,
  • 符传武 ,
  • 胡士华 ,
  • 丘琴 ,
  • 蓝榆清 ,
  • 覃冬杰 ,
  • 黄敏桃 ,
  • 钟文俊 ,
  • 徐嘉 ,
  • 覃子龙
展开
  • 1.柳州市质量检验检测研究中心,柳州 545001;
    2.柳州铁道职业技术学院,柳州 545001;
    3.广西中医药大学,南宁 530001;
    4.广西生态工程职业技术学院,柳州 545001
第一作者 Tel:13557329896;E-mail:1606262944@qq.com
**覃华亮 Tel:18178842081;E-mail:23033415@qq.com
符传武 Tel:18007726258;E-mail:38526408@qq.com

收稿日期: 2024-07-23

  网络出版日期: 2025-08-25

基金资助

*柳州市科技计划项目(2024SZ0505G001自); 广西高校中青年教师科研基础能力提升项目(2023KY1257); 国家自然科学基金资助项目(81460601)

Quality evaluation research of Vernonia amygdalina Del. based on HPLC fingerprint combined with chemical pattern recognition and multi-component determination*

  • YANG Jing ,
  • QIN Hua-liang ,
  • FU Chuan-wu ,
  • HU Shi-hua ,
  • QIU Qin ,
  • LAN Yu-qing ,
  • QIN Dong-jie ,
  • HUANG Min-tao ,
  • ZHONG Wen-jun ,
  • XU Jia ,
  • QIN Zi-long
Expand
  • 1. Liuzhou Quality Inspection and Testing Research Center, Liuzhou 545001, China;
    2. Liuzhou Railway Vocational Technical College, Liuzhou 545001, China;
    3. Guangxi University of Chinese Medicine, Nanning 530001, China;
    4. Guangxi Eco-engineering Vocational and Technical College, Liuzhou 545001, China

Received date: 2024-07-23

  Online published: 2025-08-25

摘要

目的: 建立南非叶的多成分测定方法及高效液相色谱(HPLC)指纹图谱,并结合化学模式识别的方法,综合评价不同产地的南非叶质量,为今后制定南非叶质量控制标准及其他相关南非叶成分研究奠定基础。方法: 使用HPLC法,采用Welch Ultimate® AQ-C18色谱柱(250 mm×4.6 mm,5 µm),以0.2%磷酸水溶液-乙腈为流动相进行梯度洗脱,检测波长258 nm,体积流量1 mL · min-1,柱温35 ℃。同时建立24批不同产地的南非叶指纹图谱及9个成分HPLC测定方法,并结合化学模式识别对各批不同产地的南非叶进行质量评价。结果: 24批南非叶的指纹图谱的相似度均在0.9以上,建立的对照指纹图谱可稳定有效地对南非叶进行定性判别,指纹图谱中10个共有峰,指认出9个峰。24批南非叶中尿嘧啶、绿原酸、木犀草苷、木犀草素-7-O-β-D-葡萄糖醛酸苷、异绿原酸B、3,5-O-二咖啡酰奎宁酸、1,5-二咖啡酰奎宁酸、芹菜素-7-O-β-D-吡喃葡萄糖苷、4,5-O-二咖啡酰奎宁酸的质量分数分别为0.007 314~0.084 30 mg · g-1、0.619 6~9.763 mg · g-1、0.303 8~4.031 mg · g-1、0.984 6~8.146 mg · g-1、0.043 29~0.438 7 mg · g-1、0.537 5~11.57 mg · g-1、0.437 6~13.78 mg · g-1、0.032 19~0.720 1 mg · g-1、0.190 0~1.931 mg · g-1。通过聚类分析,将24批南非叶分为2类,广东和海南产的南非叶为一类,广西产的南非叶独自为一类;主成分分析的分类结果与聚类分析一致,通过主成分得分进一步研究各产地南非叶质量差异,发现P5、P24、P22地区得分位居前三质量优于其他地区。通过正交偏最小二乘-判别分析,发现造成各地南非叶质量差异的影响能力由强到弱排序为1,5-二咖啡酰奎宁酸、绿原酸、木犀草素-7-O-β-D-葡萄糖醛酸苷、3,5-O-二咖啡酰奎宁酸。结论: 南非叶指纹图谱及多成分测定方法稳定可靠,可弥补南非叶质量控制标准方面的空白,结合化学模式识别方法,指出了南非叶质量优质的产地及影响不同产地南非叶质量应着重控制的成分,为南非叶质量控制及评价提供了坚实的基础。

本文引用格式

杨婧 , 覃华亮 , 符传武 , 胡士华 , 丘琴 , 蓝榆清 , 覃冬杰 , 黄敏桃 , 钟文俊 , 徐嘉 , 覃子龙 . 基于高效液相色谱指纹图谱结合化学模式识别及多成分测定的南非叶质量评价研究*[J]. 药物分析杂志, 2025 , 45(3) : 489 -503 . DOI: 10.16155/j.0254-1793.2024-0478

Abstract

Objective: To establish a multi-component determination method and HPLC fingerprint for Vernonia amygdalina Del., combined with chemical pattern recognition to comprehensively evaluate the quality of Vernonia amygdalina Del. from different producing, laying a foundation for the future development of quality control standards for Vernonia amygdalina Del. and other related research on Vernonia amygdalina Del.’s components. Methods: The HPLC using Welch Ultimate® AQ-C18 column (250 mm×4.6 mm,5 µm) and 0.2% phosphoric acid aqueous solution - acetonitrile as moblie phase by gradient elution at the flow rate of 1 mL · min-1, wavelength was set at 258 nm and the column temperature was 35 ℃. Simultaneously establish 24 batches of fingerprint spectra of Vernonia amygdalina Del. from different origins and a multi-component HPLC determination method for 9 components of Vernonia amygdalina Del.. Combine chemical pattern recognition to evaluate the quality of 24 batches of Vernonia amygdalina Del. from different origins. Results: The similarities of the fingerprint spectra of 24 batches of Vernonia amygdalina Del. were above 0.9. The established control fingerprint spectra could stably and effectively distinguish Vernonia amygdalina Del. qualitatively. There were 10 common peaks in the fingerprint spectra, and 9 peaks were identified. The mass fractions of 24 batches of Vernonia amygdalina Del. components that were uracil, chlorogenic acid, luteolin, luteolin-7-O-β-D-glucuronide, isochlorogenic acid B, 3,5-O-dicaffeoyl quinic acid, 1,5-dicaffeoyl quinic acid, apigenin-7-O-β-D-glucopyranoside, 4,5-O-dicaffeoyl quinic acid were 0.007 314-0.084 30 mg · g-1,0.619 6-9.763 mg · g-1,0.303 8-4.031 mg · g-1,0.984 6-8.146 mg · g-1,0.043 29-0.438 7 mg · g-1,0.537 5-11.57 mg · g-1,0.437 6-13.78 mg · g-1,0.032 19-0.720 1 mg · g-1,0.190 0-1.931 mg · g-1. Through cluster analysis, 24 batches of Vernonia amygdalina Del. were divided into 2 categories. Vernonia amygdalina Del. from Guangdong and Hainan were classified as one category, while Vernonia amygdalina Del. from Guangxi were classified as one category alone. The classification results of principal component analysis were consistent with cluster analysis. Further research on the differences in leaf quality among different regions of Vernonia amygdalina Del. was conducted through principal component scores, and it was found that the P5, P24 and P22 regions ranked in the top three with better quality than other regions. Through orthogonal partial least squares discriminant analysis, it was found that the reasons for the differences in leaf quality among different regions of Vernonia amygdalina Del. were ranked in descending order: 1,5-dicaffeoyl quinic acid, chlorogenic acid, and luteolin-7-O-β-D-glucuronide, 3,5-O-dicaffeoyl quinic acid. Conclusion: The fingerprint and multi-component determination methods of Vernonia amygdalina Del. are stable and effective through methodological detection, which can fill the gap in quality control standards for Vernonia amygdalina Del.. Combined with chemical pattern recognition methods, the high-quality production areas of Vernonia amygdalina Del. and the components that should be emphasized in controlling the quality of Vernonia amygdalina Del. from different production areas are pointed out. A comprehensive evaluation of the quality of Vernonia amygdalina Del. has been conducted, providing a solid foundation for future quality control and evaluation of Vernonia amygdalina Del..

参考文献

[1] 赵梦灵. 扁桃斑鸠菊化学成分及其生物活性研究[D].南京:南京师范大学,2021
ZHAO ML.Chemical Constituents from Vernonia amygdalina Del.and Their Biological Activity[D].Nanjing:Nanjing Normal University,2021
[2] 袁昌齐,肖正春.世界植物药[M].南京:东南大学出版社,2013:375
YUAN CQ,XIAO ZC.World Plant Medicine[M].Nanjing:Southeast University Press,2013:375
[3] 王子恒,赵孝俊,陈巡,等.新外来中药南非叶的文献研究及中药药性探讨[J].中国中药杂志,2023,48(8):2265
WANG ZH,ZHAO XJ,CHEN X,et al.Properties of new exotic traditional Chinese medicinal Vernonia amygdalina leaves:a literature research[J].China J Chin Mater Med,2023,48(8):2265
[4] 王菁. 南非叶化学成分及其抗肿瘤活性研究[D].厦门:厦门大学,2018
WANG Q.Chemical Constituents from Vernonia amygdalina Del.and Their Antitumor Activity[D].Xiamen:Xiamen University,2018
[5] 江燕. 抗癌植物扁桃斑鸠菊化学成分的研究[D].南宁:广西大学,2010
JIANG Y.Studies on the Chemical Compositions of Vernonia amygdalina Del.[D].Nanning:Guangxi University,2010
[6] 王永霞,王恩,尚靖,等.驱虫斑鸠菊中咖啡酰基奎宁酸类化学成分[J].中国中药杂志,2012,37(11):1590
WANG YX,WANG E,SHANG J,et al.Caffeoylquinic acid derivatives from the seeds of Vernonia amygdalina[J].China J Chin Mater Med,2012,37(11):1590
[7] 袁珂,贾安,朱建鑫.少花斑鸠菊中苯丙素类化合物的结构鉴定[J].分析化学,2008,36(1):47
YUAN K,JIA A,ZHU JX.Structural identification of phenylpropanoids from Vernonia chunii[J].Chin J Anal Chem,2008,36(1):47
[8] DJEUJO FM,STABLUMV,PANGRAZZI E,et al.Luteolin and vernodalol as bioactive compounds of leaf and root Vernonia amygdalina extracts:effects on α-glucosidase,glycation,ROS,cell viability,and in silico ADMET parameters[J].Pharmaceutics,2023,15(5):1541
[9] GYEBI GA,ELFIKY AA,OGUNYEMI OM,et al.Structure-based virtual screening suggests inhibitors of 3-chymotrypsin-like protease of SARS-CoV-2 from Vernonia amygdalina and Occinum gratissimum[J].Comput Biol Med,2021,136:104671
[10] 董晓华. 网格服务的信任机制研究[M].重庆:重庆大学出版社,2011:132
DONG XH.Research on Trust Mechanism of Network Service[M].Chongqing:Chongqing University Press,2011:132
[11] 余肖生,陈鹏,姜艳静.大数据处理[M].武汉:武汉大学出版社,2020:160
YU XS,CHEN P,JIANG YJ.Mass Data Processing[M].Wuhan:Wuhan University Press,2020:160
[12] 金程金融研究院.FRM二级中文精读:上[M].北京:民主与建设出版社,2019:63
Jinchen Institute of Finance.FRM Second Level Chinese Intensive Reading:Volume One[M].Beijing:Democracy & Construction Press,2019:63
[13] SHUI L,HUO K,CHEN Y,et al.Integrated metabolome and transcriptome revealed the flavonoid biosynthetic pathway in developing Vernonia amygdalina leaves[J].Peer J,2021,9:e11239
[14] 林建忠. 生物与医学统计基础[M].第2版上海:上海交通大学出版社,2022:204
LIN JZ.Basis of Biological and Medical Statistics[M].2nd Ed.Shanghai:Shanghai Jiaotong University Press,2022:204
[15] 吴喜之,吕晓玲.统计学-从数据到结论[M].第5版.北京:中国统计出版社,2021:120
WU XZ,LÜ XL.Statistics-From Data to Conclusion[M].5th Ed.Beijing:Beijing Statistics Press,2021:120
[16] 阮敬,刘帅.Python数据分析基础[M].第3版.北京:中国统计出版社,2022:379
RUAN J,LIU S.Python Basis of Data Analysis[M].3rd Ed.Beijing:Beijing Statistics Press,2022:379
[17] 董久祥,石海彬.人工智能数学基础[M].北京:机械工业出版社,2022:204
DONG JX,SHI HB.Mathematical Foundations of Artificial Intelligence[M].Beijing:Machinery Industry Press,2022:204
[18] 覃华亮,覃子龙,符传武,等.UPLC-MS/MS多组分快速测定结合化学模式识别的玉叶清火片质量控制研究[J].中草药,2019,50(22):5470
QIN HL,QIN ZL,FU CW,et al.Quality control research of Yuye Qinghuo tablets by UPLC MS/MS multicomponent determination coupled with chemical pattern recognition[J].Chin Tradit Herb Drugs,2019,50(20):5470
[19] 刘祥忠. 扁桃斑鸠菊抗痛风活性物质的研究[D].厦门:厦门大学,2018
LIU XZ.Study on Anti-gout Constituent from Vernonia amygdalina Del.[D].Xiamen:Xiamen University,2018
文章导航

/