Ingredient Analysis

Study on UPLC fingerprint and simultaneous determination of 5 components in Frucius Aceris Fabri*

Expand
  • 1. Guangdong Province Engineering and Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095, China;
    2. The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510095, China;
    3. Guangdong Yi Fang Pharmaceutical Co., Ltd., Foshan 528244, China

Received date: 2023-01-12

  Online published: 2024-06-21

Abstract

Objective: To establish a method of UPLC fingerprint and quantitative analysis of gallic acid, protocatechuic acid, p-hydroxycinnamic acid, myricitrin and quercitrin for Frucius Aceris Fabri, and to provide a reference for the quality control of Frucius Aceris Fabri. Methods: The determination was performed on a Waters CORTECS UPLC T3 column (150 mm×2.1 mm, 1.6 μm), with mobile phase consisting of acetonitrile-0.1% phosphoric acid by gradually elution at a flow rate of 0.20 mL·min-1. The column temperature was 30 ℃, and detection wavelength was set at 300 nm. The quality of 10 batches of Frucius Aceris Fabri was evaluated by similarity analysis, CA and TOPSIS analysis of fingerprints. Results: The UPLC fingerprint of Frucius Aceris Fabri was established, and 14 peaks were selected as the characteristic fingerprint peaks. Five chemical components were identified, which were gallic acid, protocatechuic acid, p-hydroxycinnamic acid, myricitrin and quercitrin. And a quantitative method for the determination of the 5 chemical components was established. Good similarities were found in the established fingerprint through similarity analysis. CA and TOPSIS analysis showed that 10 batches of Frucius Aceris Fabri samples could be clustered into 3 groups. The sample S9 from Jiangxi was classified as class Ⅰ with best quality. The samples from Guangxi and Guangdong were classified as Class Ⅱ with medium quality. The samples S1, S4 and S6 from Jiangxi were classified as Ⅲ with worst quality. The linear relationship of the 5 chemical components was good, and the r values were all above 0.999. The contents of the 5 chemical components in 10 batches of samples were 0.236-0.356 mg·g-1, 0.118-0.398 mg·g-1, 0.108-0.141 mg·g-1, 0.146-0.222 mg·g-1 and 0.046-0.104 mg·g-1, respectively. Conclusion: The established UPLC fingerprint and quantitative analysis methods of Frucius Aceris Fabri are precise and stable, which can be used for evaluating and controlling the quality of Frucius Aceris Fabri.

Cite this article

JIANG Jie-yi, YANG Min-juan, TANG Rui-yin, LI Guo-wei, XIAO Guan-lin, ZHANG Jing-nian, XU Ai-li . Study on UPLC fingerprint and simultaneous determination of 5 components in Frucius Aceris Fabri*[J]. Chinese Journal of Pharmaceutical Analysis, 2024 , 44(2) : 233 -241 . DOI: 10.16155/j.0254-1793.2024.02.05

References

[1] 《全国中草药汇编》编写组. 全国中草药汇编[M]. 第三版. 北京: 人民卫生出版社, 2014
Compilation Group of National Compilation of Chinese Herbal Medicine. National Compilation of Chinese Herbal Medicine [M]. 3rd Ed. Beijing: People's Medical Publishing House, 2014
[2] 国家中医药管理局《中华本草》编委会. 中华本草[M]. 上海: 上海科学技术出版社, 1998: 100
Editorial board of Chinese Materia Medica, National Administration of Traditional Chinese Medicine. Chinese Materia Medica [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1998: 100
[3] 周荣汉. 药用植物化学分类学[M]. 上海: 上海科学技术出版社, 1988:87
ZHOU YH. Chemical Taxonomy of Medicinal Plants [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1988: 87
[4] 唐雯, 王建军, 徐家星, 等. 槭树科药用植物的化学成分研究进展[J]. 北方园艺, 2012, (18): 194
TANG W, WANG JJ, XU JX, et al. Advances of chemical composition of medicinal plants in Aceraceae [J]. Nor Horticul, 2012, (18): 194
[5] 佟倩, 林乐静, 王达, 等. 我国槭树科研究进展与对策[J]. 林业科技通讯, 2021(7): 10
TONG Q, LIN LJ, WANG D, et al. Research progress and countermeasures of aceraceae in China [J]. For Sci Technol, 2021(7): 10
[6] 何才生, 刘海石, 周志远, 等. 南岭植物园槭属树种资源的引种保存[J]. 绿色科技, 2022, 24(7): 73
HE CS, LIU HS, ZHOU ZY, et al. Introduction and preservation of Acer species resources in Nanling Botanical Garden [J]. J Green Sci Technol, 2022, 24(7): 73
[7] 王宁, 丁志鹏, 王红梅. 槭属植物观赏性状及在园林绿化中的应用[J]. 现代农业科技, 2021(14): 152
WANG N, DING ZP, WANG HM. Study on ornamental characters of Acer plants and its application in landscaping [J]. Mod Agric Sci Technol, 2021(14): 152
[8] 广西中药材标准[S]. 1990:93
Guangxi Standard of Chinese Medicinal Materials [S]. 1990: 93
[9] 张青, 罗秋月, 李静, 等. UPLC在中药及其复方分析中的应用和研究进展[J]. 中国实验方剂学杂志, 2019, 25(3): 226
ZHANG Q, LUO QY, LI J, et al. Application and research progress of UPLC in analysis of traditional Chinese medicine and its compound [J]. Chin J Exp Tradit Med Form, 2019, 25(3): 226
[10] 巨珊珊, 李耀磊, 林志健, 等. 中药质量控制模式的现状分析与思考[J]. 中国实验方剂学杂志, 2022, 28(18): 269
JU SS, LI YL, LIN ZJ. Present situation analysis and thinking on quality control mode of Chinese materia medica [J]. Chin J Exp Tradit Med Form, 2022, 28(18): 269
[11] 李梓菡, 李钰洁, 付志博, 等. 木通UPLC指纹图谱及多指标成分含量测定[J]. 中成药, 2022, 44(12): 3909
LI ZH, LI YJ, FU ZB, et al. Determination of UPLC fingerprints and multi-index components contents of Akebia quinata [J]. Chin Tradit Pat Med, 2022, 44(12): 3909
[12] 林爽, 王杰, 高珊珊,等. 基于化学计量学结合UPLC评价白术药材质量[J]. 现代中药研究与实践, 2022, 36(5): 54
LIN S, WANG J, GAO SS, et al. Quality assessment on atractylodis macrocephalae rhizoma based on chemometrics combined UPLC [J]. Chin Med J Res Prac, 2022, 36(5): 54
[13] 白海娜. 没食子酸对酵母细胞氧化损伤保护作用研究[J]. 食品安全导刊, 2022(35): 54
BAI HN. Protective effect of gallic acid on oxidative damage of yeast cells [J]. Chin Food Saf Mag, 2022(35): 54
[14] 吴昊, 努兰·拜都拉, 刘琳玉, 等. 没食子酸对人食管癌TE-1细胞的体外抑制作用及其机制[J]. 中国药房, 2022, 33(12): 1448
WU H, BAYDOLLA N, LIU LY, et al. Inhibitory effects of gallic acid on human esophageal cancer TE-1 cells in vitro and its mechanism [J]. Chin Pharm, 2022, 33(12): 1448
[15] 张钊. 没食子酸对脂多糖诱导的小鼠J774A. 1巨噬细胞炎症反应的抑制作用[D]. 延吉: 延边大学, 2022
ZHANG Z. Inhibitory Effect of Gallic Acid on PLS-induced Inflammatory Response in Mouse J774A. 1 Macrophages [D]. Yanji: Yanbian University, 2022
[16] 程菲儿, 刘惠卿, 张文静. 原花青素和原儿茶酸的协同抗氧化作用[J]. 现代食品, 2022, 28(15): 168
CHENG FE, LIU HQ, ZHANG WJ. Synergistic antioxidant effect of proanthocyanidins and protocatechuic acid [J]. Mod Food, 2022, 28(15): 168
[17] 李佳. 原儿茶酸改善高脂诱导肝脏炎症及作用机制研究[D]. 咸阳: 西北农林科技大学, 2021
LI J. Effect of Protocatechuic Acid on Liver Inflammation Induced by High Fat and Its Mechanism [D]. Xianyang: Northwest A&F University, 2021
[18] 李宝龙, 杨大为, 刘阳, 等. 原儿茶酸对人胶质瘤细胞株U251MG增殖、凋亡的影响及其机制[J]. 中华实验外科杂志, 2021, 38(3): 472
LI BL, YANG DW, LIU Y, et al. Effect of protocatechuic acid on the proliferation and apoptosis of human glioma cell line U251MG and the mechanism [J]. Chin J Exp Surg, 2021, 38(3): 472
[19] 徐李亮, 施罗欣洁, 李若赛, 等. 羟基肉桂酸类化合物及其衍生物在阿尔茨海默病治疗中的研究进展[J]. 海峡药学, 2022, 34(8): 78
XU LL, SHI LXJ, LI RS, et al. Progress of hydroxycinnamic acids and their derivatives in Alzheimer's disease [J]. Strait Pharm J, 2022, 34(8): 78
[20] 苏慧乾. 羟基肉桂酸类及氨基膦酸类有机锡配合物的合成、结构及性质研究[D]. 聊城: 聊城大学, 2021
SU HQ. Synthesis, Structure Characterization and Properties of Organotin Complexes Derived from Hydroxycinnamic Acid and Aminophosphonic Acid [D]. Liaocheng: Liaocheng University, 2021
[21] 罗伟伟. 杨梅苷对心肌炎的保护作用及对TLR4/mTOR通路影响的探讨[D]. 杭州: 浙江中医药大学, 2022
LUO WW. Exploring the Protective Effect of Myricetin on Myocarditis and Its Influence on TLR4/m TOR Pathway [D]. Hangzhou: Zhejiang Chinese Medical University, 2022
[22] 黄梦珍. 杨梅苷降脂与抗炎功能的评估及其分子机理研究[D]. 长沙: 中南林业科技大学, 2021
HUANG MZ. The Lipid-lowering and Anti-inflammation Effects and the Potential Molecular Mechanism of Myricitrin [D]. Changsha: Central South University of Forestry and Technology, 2021
[23] 李薇娜, 江思德, 谭郎敏. 槲皮苷通过激活Akt信号通路发挥对缺氧诱导PC12细胞神经损伤的保护作用[J]. 药物生物技术, 2020, 27(4): 300
LI WN, JIANG SD, TAN LM. Quercetin protects PC12 cells from hypoxia-induced damage by activating Akt signaling Ppathway [J]. Pharm Biotechnol, 2020, 27(4): 300
[24] 吕莹, 郝尧坤, 张照兰. 槲皮苷通过Nrf2/HO-1通路抑制H2O2诱导人肝细胞L-02凋亡和损伤[J]. 中南药学, 2021, 19(1): 44
LÜ Y, HAO YK, ZHANG ZL. Quercetin inhibits H2O2-induced apoptosis and injury of human hepatocytes L-02 via the Nrf2/HO-1 pathway [J]. Cent S Pharm, 2021, 19(1): 44
Outlines

/