Column on Quality Evaluation of Arnebiae Radix
HUANG Rui, DAI Sheng-yun, WU Dong-xue, MA Xiao-jun, LIU Jie, GUO Li-nong, Dao-er-jia-la, JING Song, MA Shuang-cheng, ZHENG Jian
Objective: To compare the quality of wild and cultivated Arnebiae Radix,using macroscopic investigation and chemometric analysis of the different components in wild and cultivated Arnebiae Radix from three different habitats. Methods: Wild and cultivated Arnebiae Radix were collected and their macroscopic features were compared. Using the ACQUITY UPLC BEH C18 (2.1 mm×100 mm, 1.7 μm) column, with acetonitrile-0.05% formic acid water as the mobile phase, the contents of D-shikonin, acetylshikonin, β-acetoxyisovalerylshikonin, isobutyrylshikonin, β,β’-dimethylacrylalkannin and isovalerylshikonin in 48 batches of wild and cultivated Arnebiae Radix were determined. The detection wavelength was 275 nm and the flow rate was 0.2 mL·min-1. PCA and OPLS-DA were performed to reveal the differential components of wild and cultivated Arnebiae Radix. Results: There were great differences in macroscopic features of wild and cultivated Arnebiae Radix, and the linear relationship between the contents of six naphthoquinone components was good. The correlation coefficients were above 0.999, the average recovery rates were 93.4%-102.9%, and the RSDs were less than 3.0%. The contents of six components in different batches of wild and cultivated Arnebiae Radix were quite different, and the contents of D-shikonin and acetylshikonin in wild products were significantly higher than those in cultivated products, indicating that there were still certain differences between wild products and cultivated products. The PCA model established could distinguish wild products and cultivars, and two differentiating components in wild products and cultivars were revealed by OPLS-DA, namely isobutyryl shikonin, β,β’-dimethylacrylalkannin. Conclusion: By comparing the core size, cork curl degree and specific odor of wild and cultivated products, the two can be identified. The established content determination method is repeatable, specific, stable and feasible. The differential components in wild and cultivated Arnebiae Radix in three different regions are identified, which provides a basis for the quality control of Arnebiae Radix and provides ideas for expanding the source of Arnebiae Radix.