[1] HOLMES JC, MORRELL FA. Oscillographic mass spectrometric monitoring of gas chromatography[J]. Appl Spectrosc, 1957, 11(2): 86
[2] HU Q, NOLL RJ, LI HY, et al. The Orbitrap: a new mass spectrometer[J]. J Mass Spectrom, 2005, 40(4): 430
[3] KOULMAN A, WOFFENDIN G, NARAYANA VK, et al. High-resolution extracted ion chromatography, a new tool for metabolomics and lipidomics using a second-generation orbitrap mass spectrometer[J]. Rapid Commun Mass Spectrom, 2009, 23(10): 1411
[4] SCHELTEMA RA, KAMLEH A, WILDRIDGE D, et al. Increasing the mass accuracy of high-resolution LC-MS data using background ions: a case study on the LTQ-Orbitrap[J]. Proteomics, 2008, 8(22): 4647
[5] WEIDT S, HAGGARTY J, KEAN R, et al. A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to candida albicans and staphylococcus aureus biofilms[J]. Metabolomics, 2016, 12(12): 189
[6] ZEMANKOVA K, PAVELICOVA K, POMPEIANO A, et al. Targeted volatolomics of human monocytes: comparison of 2D-GC/TOF-MS and 1D-GC/Orbitrap-MS methods[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2021, 1184:122975
[7] PANG X, QIU J, ZHANG ZY, et al. Wide-scope multi-residue analysis of pesticides in beef by gas chromatography coupled with quadrupole Orbitrap mass spectrometry[J]. Food Chem, 2023, 407: 135171
[8] DORIVAL-GARCIA N, CARILLO S, TA C, et al. Large-scale assessment of extractables and leachables in single-use bags for biomanufacturing[J]. Anal Chem, 2018, 90(15): 9006
[9] PESCHEL C, HORSTHEMKE F, WINTER M, et al. Implementation of Orbitrap mass spectrometry for improved GC-MS target analysis in lithium ion battery electrolytes[J]. MethodsX, 2022, 9: 101621
[10] REMY PA, SARRAZIN E, PERES C, et al. Identification of novel compounds in rose absolute with gas chromatography/high-resolution mass spectrometry[J]. Flavour Fragrance J, 2022, 37(3): 133
[11] SHU JZ, WANG ZY, ZHANG ZF, et al. High-performance Na-CH3ONa/gamma-Al2O3 catalysts for high-efficiency conversion of phenols to ethers[J]. ACS Omega, 2022, 7(13): 10985
[12] 贺美莲, 郭常川, 石峰, 等. Orbitrap高分辨质谱技术在药物分析领域中的应用进展[J]. 药物分析杂志, 2019, 39(1): 105
HE ML, GUO CC, SHI F, et al. Application progress of Orbitrap high resolution mass spectrometry in the field of pharmaceutical analysis[J]. Chin J Pharm Anal, 2019, 39(1): 105
[13] KINGDON KH. A method for the neutralization of electron space charge by positive ionization at very low gas pressures[J]. Phys Rev, 1923, 21(4): 408
[14] KNIGHT RD. Storage of ions from laser-produced plasmas[J]. Appl Phys Lett, 1981, 38(4): 221
[15] MAKAROV A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis[J]. Anal Chem, 2000, 72(6): 1156
[16] 王勇为. LTQ-Orbitrap Velos双分压线性阱和静电场轨道阱组合式高分辨质谱性能及应用[J]. 现代仪器, 2010, 16(5): 15
WANG YW. The performance and featured applications of LTQ Orbitrap Velos, a hybrid high resolution mass spectrometer using electrostatic orbital mass analyzer coupled with dual pressure ion trap[J]. Mod Instrum Med Treat, 2010, 16(5): 15
[17] PETERSON AC, MCALISTER GC, QUARMBY ST, et al. Development and characterization of a GC-enabled QLT-Orbitrap for high-resolution and high-mass accuracy GC/MS[J]. Anal Chem, 2010, 82(20): 8618
[18] PETERSON AC, HAUSCHILD JP, QUARMBY ST, et al. Development of a GC/Quadrupole-Orbitrap mass spectrometer, part Ⅰ: design and characterization [J]. Anal Chem, 2014, 86(20): 10036
[19] HUNG NV, MOHABEER C, VACCARO M, et al. Development of two-dimensional gas chromatography (GC×GC) coupled with Orbitrap-technology-based mass spectrometry: interest in the identification of biofuel composition[J]. J Mass Spectrom, 2020, 55: e4495
[20] 李春扬, 张晓磊, 田菲菲, 等. 气相色谱-串联质谱技术在食品分析中的应用研究进展[J]. 食品安全质量检测学报, 2016, 7(8): 3291
LI CY, ZHANG XL, TIAN FF, et al. Research progress on application of gas chromatography-tandem mass spectrometry in food analysis[J]. J Food Saf Food Qual, 2016, 7(8): 3291
[21] MOL HGJ, TIENSTRA M, ZOMER P. Evaluation of gas chromatography-electron ionization-full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis[J]. Anal Chim Acta, 2016, 935: 161
[22] TIENSTRA M, MOL HGJ. Application of gas chromatography coupled to quadrupole-Orbitrap mass spectrometry for pesticide residue analysis in cereals and feed ingredients[J]. J AOAC Int, 2018, 101(2): 342
[23] LOZANO A, UCLES S, UCLES A, et al. Pesticide residue analysis in fruit- and vegetable-based baby foods using GC-Orbitrap MS[J]. J AOAC Int, 2018, 101(2): 374
[24] GARVEY J, WALSH T, DEVANEY E, et al. Multi-residue analysis of pesticide residues and polychlorinated biphenyls in fruit and vegetables using orbital ion trap high-resolution accurate mass spectrometry[J]. Anal Bioanal Chem, 2020, 412(26): 7113
[25] VARGAS-PEREZ M, DOMINGUEZ I, GONZALEZ FJE, et al. Application of full scan gas chromatography high resolution mass spectrometry data to quantify targeted-pesticide residues and to screen for additional substances of concern in fresh-food commodities[J]. J Chromatogr A, 2020, 1622: 461118
[26] MENG Z, LI Q, CONG J, et al. Rapid screening of 350 pesticide residues in vegetable and fruit juices by multi-plug filtration cleanup method combined with gas chromatography-electrostatic field Orbitrap high resolution mass spectrometry[J]. Foods, 2021, 10(7): 1651
[27] 殷雪琰, 朱佳明, 堵燕钰, 等. 基于气相色谱-静电场轨道阱高分辨质谱法快速筛查和确证农产品中222种农药残留[J]. 分析测试学报, 2022, 41(2): 172
YIN XY, ZHU JM, DU YY, et al. Rapid screening and confirmation of 222 pesticide residues in agricultural products by gas chromatography-electrostatic field Orbitrap high resolution mass spectrometry[J]. J Instrum Anal, 2022, 41(2): 172
[28] HAYWARD DG, ARCHER JC, ANDREW S, et al. Application of a high-resolution quadrupole/orbital trapping mass spectrometer coupled to a gas chromatograph for the determination of persistent organic pollutants in cow’s and human milk[J]. J Agric Food Chem, 2018, 66(44): 11823
[29] 马畅, 曹蓉, 孙帅, 等. 基于气相色谱-静电场轨道阱高分辨质谱的海参中风险物质的筛选[J]. 色谱, 2022, 40(10): 944
MA C, CAO R, SUN S, et al. Screening of risky substances in sea cucumbers based on gas chromatography-Orbitrap high-resolution mass spectrometry[J]. Chin J Chromatogr, 2022, 40(10): 944
[30] WICKRAMA-ARACHCHIGE AUK, HIRABAYASHI T, IMAI Y, et al. Accumulation of halogenated polycyclic aromatic hydrocarbons by different tuna species, determined by high-resolution gas chromatography Orbitrap mass spectrometry[J]. Environ Pollut, 2020, 256: 113487
[31] GOSWAMI P, WICKRAMA-ARACHCHIGE AUK, YAMADA M, et al. Presence of halogenated polycyclic aromatic hydrocarbons in milk powder and the consequence to human health[J]. Toxics, 2022, 10(10): 621
[32] MEZIERE M, KRATSCHMER K, PERKONS I, et al. Addressing main challenges regarding short- and medium-chain chlorinated paraffin analysis using GC/ECNI-MS and LC/ESI-MS methods[J]. J Am Soc Mass Spectrom, 2020, 31(9): 1885
[33] KRATSCHMER K, COJOCARIU C, SCHACHTELE A, et al. Chlorinated paraffin analysis by gas chromatography Orbitrap high-resolution mass spectrometry: method performance, investigation of possible interferences and analysis of fish samples[J]. J Chromatogr A, 2018, 1539: 53
[34] KRATSCHMER K, SCHACHTELE A, MALISCH R, et al. Chlorinated paraffins (CPs) in salmon sold in southern Germany: concentrations, homologue patterns and relation to other persistent organic pollutants[J]. Chemosphere, 2019, 227: 630
[35] KRATSCHMER K, SCHACHTELE A, VETTER W. Chlorinated paraffins in baby food from the German market[J]. Food Control, 2021, 123: 107689
[36] BELMONTE-SáNCHEZ JR, GHERGHEL S, ARREBOLA-LIÉBANAS J, et al. Rum classification using fingerprinting analysis of volatile fraction by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry[J]. Talanta, 2018, 187: 348
[37] LIN Y, LIU Y, LIU S, et al. Sensory and chemical characterization of Chinese bog bilberry wines using check-all-that-apply method and GC-Quadrupole-MS and GC-Orbitrap-MS analyses[J]. Food Res Int, 2022, 151: 110809
[38] LIU H, HUI T, ZHENG X, et al. Characterization of key lipids for binding and generating aroma compounds in roasted mutton by UPLC-ESI-MS/MS and Orbitrap exploris GC[J]. Food Chem, 2022, 374: 131723
[39] LIU YR, LI N, LI XY, et al. A high-resolution Orbitrap mass spectral library for trace volatile compounds in fruit wines[J]. Sci Data, 2022, 9(1): 496
[40] LIU Y, QIAN X, XING J, et al. Accurate determination of 12 lactones and 11 volatile phenols in nongrape wines through headspace-solid-phase microextraction (HS-SPME) combined with high-resolution gas chromatography-Orbitrap mass spectrometry (GC-Orbitrap-MS)[J]. J Agric Food Chem, 2022, 70(6): 1971
[41] GB 2763-2021食品中农药最大残留限量. 食品安全国家标准[S]. 2021
GB 2763-2021 National Food Safety Standard—Maximum Residue Limits for Pesticides in Food. National Standard[S]. 2021
[42] UCLES S, UCLES A, LOZANO A, et al. Shifting the paradigm in gas chromatography mass spectrometry pesticide analysis using high resolution accurate mass spectrometry[J]. J Chromatogr A, 2017, 1501: 107
[43] CHEN LG, HUANG YM, HAN S, et al. Sample pretreatment optimization for the analysis of short chain chlorinated paraffins in soil with gas chromatography-electron capture negative ion-mass spectrometry[J]. J Chromatogr A, 2013, 1274: 36
[44] RETH M, OEHME M. Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins[J]. Anal Bioanal Chem, 2004, 378(7): 1741
[45] 张青, 王锡昌, 刘源. GC-O法在食品风味分析中的应用[J]. 食品科学, 2009, 30(3): 284
ZHANG Q, WANG XC, LIU Y. Aplications of gas chromatography-olfactometry(GC-O) in food flavor analysis[J]. Food Sci, 2009, 30(3): 284
[46] 邱爽, 唐飞, 刘畅, 等. 气相色谱-质谱联机结合感官分析共建樱桃香气关联网络[J]. 食品科学, 2021, 42(16): 209
QIU S, TANG F, LIU C, et al. Aroma networking of cherries based on gas chromatography-mass spectrometric data and sensory evaluation[J]. Food Sci, 2021, 42(16): 209
[47] OUYANG XY, ZHU BQ, LIU RJ, et al. Comparison of volatile composition and color attributes of mulberry wine fermented by different commercial yeasts[J]. J Food Process Preserv, 2017, 42(2): e13432
[48] WEI M, WANG SY, GU P, et al. Comparison of physicochemical indexes, amino acids, phenolic compounds and volatile compounds in bog bilberry juice fermented by Lactobacillus plantarum under different pH conditions[J]. J Food Sci Technol, 2018, 55(6): 2240
[49] ALEGRE Y, SAENZ-NAVAJAS MP, HERNANDEZ-ORET P, et al. Sensory, olfactometric and chemical characterization of the aroma potential of Garnacha and Tempranillo winemaking grapes[J]. Food Chem, 2020, 331: 127207
[50] LAN Y, GYO J, QIAN X, et al. Characterization of key odor-active compounds in sweet Petit Manseng (Vitis vinifera L.) wine by gas chromatography-olfactometry, aroma reconstitution, and omission tests[J]. J Food Sci, 2021, 86(4): 1258
[51] WANG X, GUO W, SUN B, et al. Characterization of key aroma-active compounds in two types of peach spirits produced by distillation and pervaporation by means of the sensomics approach[J]. Foods, 2022, 11(17): 2598
[52] BALDWIN S, BRISTOW T, RAY A, et al. Applicability of gas chromatography/quadrupole-Orbitrap mass spectrometry in support of pharmaceutical research and development[J]. Rapid Commun Mass Spectrom, 2016, 30(7): 873
[53] KEE CL, ZENG Y, GE XW, et al. Analysis of N-nitrosodimethylamine in metformin hydrochloride products by high-resolution accurate mass gas chromatography mass spectrometry[J]. Rapid Commun Mass Spectrom, 2023, 37(1): e9414
[54] RIVERA-PEREZ A, ROMERO-GONZALEZ R, GARRIDO FRENICH A. Fingerprinting based on gas chromatography-Orbitrap high-resolution mass spectrometry and chemometrics to reveal geographical origin, processing, and volatile markers for thyme authentication[J]. Food Chem, 2022, 393: 133377
[55] CASTRO-ALVES V, KALBINA I, NILSEN A, et al. Integration of non-target metabolomics and sensory analysis unravels vegetable plant metabolite signatures associated with sensory quality: a case study using dill (Anethum graveolens)[J]. Food Chem, 2021, 344: 128714
[56] WANG YY, MENG ZJ, SU CY, et al. Rapid screening of 352 pesticide residues in chrysanthemum flower by gas chromatography coupled to quadrupole-Orbitrap mass spectrometry with Sin-QuEChERS nanocolumn extraction[J]. J Anal Methods Chem, 2022, 2022: 7684432