Review & Monography

Advances in bacteriophage technology for foodborne pathogenic bacteria detection*

Expand
  • 1. Department of Biochemical Pharmacy, Faculty of Pharmacy, Naval Medical University (The Second Military Medical University), Shanghai 200433, China;
    2. The Sixth Student Team, College of Basic Medical Sciences, Naval Medical University (The Second Military Medical University), Shanghai 200433, China

Revised date: 2023-07-30

  Online published: 2024-06-21

Abstract

Foodborne diseases caused by foodborne pathogenic bacteria have exerted a huge impact not only on the development of economics and society but also on public health. The accurate detection methods for pathogenic bacteria serve as a significant prerequisite in the prevention and treatment of such diseases. At present, some approaches have been applied in the detection of pathogenic bacteria, including bacterial culture assays, molecular biological assays, immunological assays, instrument-based methods, and bacteriophage-based methods. Bacteriophage is highly specific, simple-structured, cost-effective, and available in the recognition of living and dead bacteria, which makes it a promising choice in the field of bacteria detection. In this review, the characteristics, principles, and recent advances of phage-based bacteria detection are presented a comprehensive overview, and opt to provide a basis for further development of rapid, effective, and economical pathogenic bacteria detection methods.

Cite this article

WANG Xuan, QI Min-yu, MA Hui-lin, YAO Yi-qing, LU Bin, CAO Yan . Advances in bacteriophage technology for foodborne pathogenic bacteria detection*[J]. Chinese Journal of Pharmaceutical Analysis, 2023 , 43(10) : 1645 -1652 . DOI: 10.16155/j.0254-1793.2023.10.02

References

[1] WHO. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Diseases Burden Epidemiology Reference Group 2007-2015[EB/OL]. [2022-05-24]. https://www.who.int/publications/i/item/9789241565165
[2] World Bank. The Safe Food Imperative: Accelerating Progress in Low- and Middle-Income Countries [EB/OL]. [2022-05-24]. https://openknowledge.worldbank.org/handle/10986/30568
[3] SCALLAN E, HOEKSTRA RM, ANGULO FJ, et al. Foodborne illness acquired in the United States―major pathogens[J]. Emerg Infect Dis, 2011, 17(1):7
[4] 白芷烨, 汪雯, 吉小凤, 等. CRISPR在食源性致病菌进化分析、检测分型及毒力耐药调控中的应用进展[J]. 生物工程学报, 2021, 37(7):2414
BAI ZY, WANG W, JI XF, et al. Application of CRISPR in evolution analysis, detecting and typing, virulence and antibiotic resistance regulation in food-borne pathogens[J]. Chin J Biotechnol, 2021, 37(7):2414
[5] 燕雯雯. 多重实时PCR检测腹膜透析相关性腹膜炎致病菌的应用分析[D]. 合肥: 安徽医科大学, 2016
YAN WW. The Application Analysis of Multiplex Real-time PCR Assays for Detection of Pathogenic Bacterium in Peritoneal Dialysis-associated Peritonitis[D]. Hefei: Anhui Medical University, 2016
[6] LIU S, WANG B, SUI Z, et al. Faster detection of Staphylococcus aureus in milk and milk powder by flow cytometry[J]. Foodborne Pathog Dis, 2021, 18(5):346
[7] WANG B, LIU S, SUI Z, et al. Rapid flow cytometric detection of single viable Salmonella cells in milk powder [J]. Foodborne Pathog Dis, 2020, 17(7):447
[8] CHRISTENSEN JJ, DARGIS R, HAMMER M, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of gram-positive, catalase-negative cocci not belonging to the Streptococcus or Enterococcus genus and benefits of database extension[J]. J Clin Microbiol, 2012, 50(5):1787
[9] 屠博文, 吉俊敏, 杜强, 等. 基质辅助激光解析飞行质谱法检测空肠弯曲菌及李斯特菌[J]. 食品科学, 2017, 38(20):262
TU BW, JI JM, DU Q, et al. Matrix-assisted laser desorption ionization time of flight mass spectrometry for the detection of Campylobacter jejuni and Listeria monocytogenes[J]. Food Sci, 2017, 38(20):262
[10] 马小梅, 范刚, 钱彩娣, 等. 铜绿假单胞菌噬菌体的分离[J]. 临床医药文献电子杂志, 2018, 5(95):4
MA XM, FAN G, QIAN CD, et al. Isolation of phage from Pseudomonas aeruginosa[J]. Electron J Clin Med Lit, 2018, 5(95):4
[11] 孙嘉慧. 病原菌及其耐药性的快速检测及药物组合优化抑制[D]. 上海: 上海交通大学, 2020
SUN JH. Rapid Detection of Pathogenic and Their Drug Resistance and Optimal Drug Combination Inhibition Therapy[D]. Shanghai: Shanghai Jiaotong University, 2020
[12] FAROOQ U, YANG Q, ULLAH MW, et al. Bacterial biosensing: recent advances in phage-based bioassays and biosensors[J]. Biosens Bioelectron, 2018, 118: 204
[13] BÁRDY P, PANTUČEK R, BENEŠÍK M, et al. Genetically modified bacteriophages in applied microbiology[J]. J Appl Microbiol, 2016, 121(3):618
[14] 袁盛建, 马迎飞. 噬菌体合成生物学研究进展和应用[J]. 合成生物学, 2020, 1(6):635
YUAN SJ, MA YF. Advances and applications of phage synthetic biology[J]. Synth Biol J, 2020, 1(6):635
[15] TAWIL N, SACHER E, MANDEVILLE R, et al. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages[J]. Biosens Bioelectron, 2012, 37(1):24
[16] 丁林贤, 苏晓梅, 横田明. 活的但非可培养(VBNC)状态菌的研究进展[J]. 微生物学报, 2011, 51(7):858
DING LX, SU XM, HENG TM. Research progress in viable but non-culturable bacteria[J]. Acta Microbiol Sin, 2011, 51(7):858
[17] BEN SAID M, BEN SAAD M, ACHOURI F, et al. Detection of active pathogenic bacteria under stress conditions using lytic and specific phage[J]. Water Sci Technol, 2019, 80(2):282
[18] 李波, 吴旭红, 邢建民. 噬菌体在细菌诊治中的应用进展[J]. 重庆医学, 2018, 47(A01):72
LI B, WU XH, XING JM. Application progress of bacteriophage in bacterial diagnosis and treatment[J]. Chongqing Med, 2018, 47(A01):72
[19] ELLIS EL, DELBRÜCK M. The growth of bacteriophage[J]. J Gen Physiol, 1939, 22(3):365
[20] GOODRIDGE L, CHEN J, GRIFFITHS M. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157:H7[J]. Appl Environ Microbiol, 1999, 65(4):1397
[21] Health Protection Agency. Communicable disease reports weekly[J]. Commun Dis Intell, 2000, 24(6):168
[22] WANG X, WEI Z, YANG K, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nat Biotechnol, 2019, 37(12):1513
[23] 苏章庭, 曾晓琮, 刘秋婷, 等. 不同食品标准中沙门氏菌分类方案比较[J]. 质量安全与检验检测, 2021, 31(2):54
SU ZT, ZENG XZ, LIU QT, et al. the taxonomy of Salmonella in different food standards[J]. Qual Saf Insp Test, 2021, 31(2):54
[24] SUMRALL ET, RÖHRIG C, HUPFELD M, et al. Glycotyping and specific separation of Listeria monocytogenes with a novel bacteriophage protein tool kit[J]. Appl Environ Microbiol, 2020, 86(13):e00612
[25] 陈松建, 李亚辉, 王书伟, 等. 51株临床铜绿假单胞菌ERIC-PCR分型与噬菌体分型比较研究[J]. 中国病原生物学杂志, 2018, 13(11):1193
CHEN SJ, LI YH, WANG SW, et al. Comparison of ERIC-PCR typing and phage typing of 551 strains of Pseudomonas aeruginosa[J]. J Pathogen Biol, 2018, 13(11):1193
[26] BOEHMER T, VOGLER AJ, THOMAS A, et al. Phenotypic characterization and whole genome analysis of extended-spectrum beta-lactamase-producing bacteria isolated from dogs in Germany[J]. PLoS One, 2018, 13(10):e0206252
[27] SCHOEPP NG, SCHLAPPI TS, CURTIS MS, et al. Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples[J]. Sci Transl Med, 2017, 9(410):3693
[28] SCHMELCHER M, LOESSNER MJ. Application of bacteriophages for detection of foodborne pathogens[J]. Bacteriophage, 2014, 4(1):e28137
[29] ŠUSTER K, CÖR A. Fast and specific detection of staphylococcal PJI with bacteriophage-based methods within 104 sonicate fluid samples[J]. J Orthop Res, 2022, 40(6):1358
[30] CHEN J, JACKSON AA, ROTELLO VM, et al. Colorimetric detection of Escherichia coli based on the enzyme-induced metallization of gold nanorods[J]. Small, 2016, 12(18):2469
[31] WEI X, FENG Y, CHEN M, et al. Recent advances in glycosidase probes used in Escherichia coli detection[J]. Curr Med Chem, 2021, 28(26):5386
[32] CAI G, WU W, FENG S, et al. Label-free E. coli detection based on enzyme assay and a microfluidic slipchip[J]. Analyst, 2021, 146(14):4622
[33] 何勇. 细菌识别物质的筛选及其在致病细菌检测和药敏试验中的应用[D]. 重庆: 西南大学, 2018
HE Y. Screening of Pathogenic Bacteria Recognition Elements and Its Application in Bacterial Detection and Antimicrobial Susceptible Testing[D]. Chongqing: Southwest University, 2018
[34] COX CR, JENSEN KR, MONDESIRE RR, et al. Rapid detection of Bacillus anthracis by γ phage amplification and lateral flow immunochromatography[J]. J Microbiol Methods, 2015, 118: 51
[35] RAJNOVIC D, MUÑOZ-BERBEL X, MAS J. Fast phage detection and quantification: an optical density-based approach[J]. PLoS One, 2019, 14(5):e0216292
[36] SHABANI A, MARQUETTE CA, MANDEVILLE R, et al. Magnetically-assisted impedimetric detection of bacteria using phage-modified carbon microarrays[J]. Talanta, 2013, 116: 1047
[37] LOW HZ, BÖHNLEIN C, SPROTTE S, et al. Fast and easy phage-tagging and live/dead analysis for the rapid monitoring of bacteriophage infection[J]. Front Microbiol, 2020, 11: 602444
[38] 黄豪圣, 王许航, 席静, 等. 荧光标记噬菌体快速检测K1荚膜大肠杆菌方法的建立及应用[J]. 微生物学通报, 2021, 48(9):3218
HUANG HS, WANG XH, XI J, et al. Establishment and application of fluorescence labeled phage for rapid detection of Escherichia coli K1[J]. Microbiol China, 2021, 48(9):3218
[39] NI Q, MEHTA S, ZHANG J. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters[J]. FEBS J, 2018, 285(2):203
[40] SINGH S, HINKLEY T, NUGEN SR, et al. Colorimetric detection of Escherichia coli using engineered bacteriophage and an affinity reporter system[J]. Anal Bioanal Chem, 2019, 411(27):7273
[41] FRANCHE N, VINAY M, ANSALDI M. Substrate-independent luminescent phage-based biosensor to specifically detect enteric bacteria such as E. coli[J]. Environ Sci Pollut Res Int, 2017, 24(1):42
[42] HINKLEY TC, GARING S, SINGH S, et al. Reporter bacteriophage T7(NLC) utilizes a novel NanoLuc: CBM fusion for the ultrasensitive detection of Escherichia coli in water[J]. Analyst, 2018, 143(17):4074
[43] VINAY M, FRANCHE N, GRÉGORI G, et al. phage-based fluorescent biosensor prototypes to specifically detect enteric bacteria such as E. coli and Salmonella enterica Typhimurium[J]. PLoS One, 2015, 10(7):e0131466
[44] SCHOFIELD DA, SHARP NJ, WESTWATER C. Phage-based platforms for the clinical detection of human bacterial pathogens[J]. Bacteriophage, 2012, 2(2):105
[45] XU L, QIU S, YANG L, et al. Aminocyanopyridines as anti-lung cancer agents by inhibiting the STAT3 pathway[J]. Mol Carcinog, 2019, 58(8):1512
[46] ARYA SK, SINGH A, NAIDOO R, et al. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance[J]. Analyst, 2011, 136(3):486
[47] HALKARE P, PUNJABI N, WANGCHUK J, et al. Label-free detection of Escherichia coli from mixed bacterial cultures using bacteriophage T4 on plasmonic fiber-optic sensor[J]. ACS Sens, 2021, 6(7):2720
[48] SHIN HJ, LIM WK. Rapid label-free detection of E. coli using a novel SPR biosensor containing a fragment of tail protein from phage lambda[J]. Prep Biochem Biotechnol, 2018, 48(6):498
[49] HYEON SH, LIM WK, SHIN HJ. Novel surface plasmon resonance biosensor that uses full-length Det7 phage tail protein for rapid and selective detection of Salmonella enterica serovar Typhimurium[J]. Biotechnol Appl Biochem, 2021, 68(1):5
[50] ZHOU Y, MARAR A, KNER P, et al. Charge-directed immobilization of bacteriophage on nanostructured electrode for whole-cell electrochemical biosensors[J]. Anal Chem, 2017, 89(11):5734
[51] SEDKI M, CHEN X, CHEN C, et al. Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms[J]. Biosens Bioelectron, 2020, 148: 111794
[52] 张金玲, 杜祎, 高广恒, 等. 酶电极法测定玉米中黄曲霉毒素B1含量[J]. 山东科学, 2018, 31(1):60
ZHANG JL, DU Y, GAO GH, et al. Determination of afatoxin B1 content in corn by enzyme electrode method[J]. Shandong Sci, 2018, 31(1):60
[53] WANG D, CHEN J, NUGEN SR. Electrochemical detection of Escherichia coli from aqueous samples using engineered phages[J]. Anal Chem, 2017, 89(3):1650
[54] OFIR G, SOREK R. Contemporary phage biology: from classic models to new insights[J]. Cell, 2018, 172(6):1260
Outlines

/