[1] WHO. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Diseases Burden Epidemiology Reference Group 2007-2015[EB/OL]. [2022-05-24]. https://www.who.int/publications/i/item/9789241565165
[2] World Bank. The Safe Food Imperative: Accelerating Progress in Low- and Middle-Income Countries [EB/OL]. [2022-05-24]. https://openknowledge.worldbank.org/handle/10986/30568
[3] SCALLAN E, HOEKSTRA RM, ANGULO FJ, et al. Foodborne illness acquired in the United States―major pathogens[J]. Emerg Infect Dis, 2011, 17(1):7
[4] 白芷烨, 汪雯, 吉小凤, 等. CRISPR在食源性致病菌进化分析、检测分型及毒力耐药调控中的应用进展[J]. 生物工程学报, 2021, 37(7):2414
BAI ZY, WANG W, JI XF, et al. Application of CRISPR in evolution analysis, detecting and typing, virulence and antibiotic resistance regulation in food-borne pathogens[J]. Chin J Biotechnol, 2021, 37(7):2414
[5] 燕雯雯. 多重实时PCR检测腹膜透析相关性腹膜炎致病菌的应用分析[D]. 合肥: 安徽医科大学, 2016
YAN WW. The Application Analysis of Multiplex Real-time PCR Assays for Detection of Pathogenic Bacterium in Peritoneal Dialysis-associated Peritonitis[D]. Hefei: Anhui Medical University, 2016
[6] LIU S, WANG B, SUI Z, et al. Faster detection of Staphylococcus aureus in milk and milk powder by flow cytometry[J]. Foodborne Pathog Dis, 2021, 18(5):346
[7] WANG B, LIU S, SUI Z, et al. Rapid flow cytometric detection of single viable Salmonella cells in milk powder [J]. Foodborne Pathog Dis, 2020, 17(7):447
[8] CHRISTENSEN JJ, DARGIS R, HAMMER M, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of gram-positive, catalase-negative cocci not belonging to the Streptococcus or Enterococcus genus and benefits of database extension[J]. J Clin Microbiol, 2012, 50(5):1787
[9] 屠博文, 吉俊敏, 杜强, 等. 基质辅助激光解析飞行质谱法检测空肠弯曲菌及李斯特菌[J]. 食品科学, 2017, 38(20):262
TU BW, JI JM, DU Q, et al. Matrix-assisted laser desorption ionization time of flight mass spectrometry for the detection of Campylobacter jejuni and Listeria monocytogenes[J]. Food Sci, 2017, 38(20):262
[10] 马小梅, 范刚, 钱彩娣, 等. 铜绿假单胞菌噬菌体的分离[J]. 临床医药文献电子杂志, 2018, 5(95):4
MA XM, FAN G, QIAN CD, et al. Isolation of phage from Pseudomonas aeruginosa[J]. Electron J Clin Med Lit, 2018, 5(95):4
[11] 孙嘉慧. 病原菌及其耐药性的快速检测及药物组合优化抑制[D]. 上海: 上海交通大学, 2020
SUN JH. Rapid Detection of Pathogenic and Their Drug Resistance and Optimal Drug Combination Inhibition Therapy[D]. Shanghai: Shanghai Jiaotong University, 2020
[12] FAROOQ U, YANG Q, ULLAH MW, et al. Bacterial biosensing: recent advances in phage-based bioassays and biosensors[J]. Biosens Bioelectron, 2018, 118: 204
[13] BÁRDY P, PANTUČEK R, BENEŠÍK M, et al. Genetically modified bacteriophages in applied microbiology[J]. J Appl Microbiol, 2016, 121(3):618
[14] 袁盛建, 马迎飞. 噬菌体合成生物学研究进展和应用[J]. 合成生物学, 2020, 1(6):635
YUAN SJ, MA YF. Advances and applications of phage synthetic biology[J]. Synth Biol J, 2020, 1(6):635
[15] TAWIL N, SACHER E, MANDEVILLE R, et al. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages[J]. Biosens Bioelectron, 2012, 37(1):24
[16] 丁林贤, 苏晓梅, 横田明. 活的但非可培养(VBNC)状态菌的研究进展[J]. 微生物学报, 2011, 51(7):858
DING LX, SU XM, HENG TM. Research progress in viable but non-culturable bacteria[J]. Acta Microbiol Sin, 2011, 51(7):858
[17] BEN SAID M, BEN SAAD M, ACHOURI F, et al. Detection of active pathogenic bacteria under stress conditions using lytic and specific phage[J]. Water Sci Technol, 2019, 80(2):282
[18] 李波, 吴旭红, 邢建民. 噬菌体在细菌诊治中的应用进展[J]. 重庆医学, 2018, 47(A01):72
LI B, WU XH, XING JM. Application progress of bacteriophage in bacterial diagnosis and treatment[J]. Chongqing Med, 2018, 47(A01):72
[19] ELLIS EL, DELBRÜCK M. The growth of bacteriophage[J]. J Gen Physiol, 1939, 22(3):365
[20] GOODRIDGE L, CHEN J, GRIFFITHS M. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157:H7[J]. Appl Environ Microbiol, 1999, 65(4):1397
[21] Health Protection Agency. Communicable disease reports weekly[J]. Commun Dis Intell, 2000, 24(6):168
[22] WANG X, WEI Z, YANG K, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nat Biotechnol, 2019, 37(12):1513
[23] 苏章庭, 曾晓琮, 刘秋婷, 等. 不同食品标准中沙门氏菌分类方案比较[J]. 质量安全与检验检测, 2021, 31(2):54
SU ZT, ZENG XZ, LIU QT, et al. the taxonomy of Salmonella in different food standards[J]. Qual Saf Insp Test, 2021, 31(2):54
[24] SUMRALL ET, RÖHRIG C, HUPFELD M, et al. Glycotyping and specific separation of Listeria monocytogenes with a novel bacteriophage protein tool kit[J]. Appl Environ Microbiol, 2020, 86(13):e00612
[25] 陈松建, 李亚辉, 王书伟, 等. 51株临床铜绿假单胞菌ERIC-PCR分型与噬菌体分型比较研究[J]. 中国病原生物学杂志, 2018, 13(11):1193
CHEN SJ, LI YH, WANG SW, et al. Comparison of ERIC-PCR typing and phage typing of 551 strains of Pseudomonas aeruginosa[J]. J Pathogen Biol, 2018, 13(11):1193
[26] BOEHMER T, VOGLER AJ, THOMAS A, et al. Phenotypic characterization and whole genome analysis of extended-spectrum beta-lactamase-producing bacteria isolated from dogs in Germany[J]. PLoS One, 2018, 13(10):e0206252
[27] SCHOEPP NG, SCHLAPPI TS, CURTIS MS, et al. Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples[J]. Sci Transl Med, 2017, 9(410):3693
[28] SCHMELCHER M, LOESSNER MJ. Application of bacteriophages for detection of foodborne pathogens[J]. Bacteriophage, 2014, 4(1):e28137
[29] ŠUSTER K, CÖR A. Fast and specific detection of staphylococcal PJI with bacteriophage-based methods within 104 sonicate fluid samples[J]. J Orthop Res, 2022, 40(6):1358
[30] CHEN J, JACKSON AA, ROTELLO VM, et al. Colorimetric detection of Escherichia coli based on the enzyme-induced metallization of gold nanorods[J]. Small, 2016, 12(18):2469
[31] WEI X, FENG Y, CHEN M, et al. Recent advances in glycosidase probes used in Escherichia coli detection[J]. Curr Med Chem, 2021, 28(26):5386
[32] CAI G, WU W, FENG S, et al. Label-free E. coli detection based on enzyme assay and a microfluidic slipchip[J]. Analyst, 2021, 146(14):4622
[33] 何勇. 细菌识别物质的筛选及其在致病细菌检测和药敏试验中的应用[D]. 重庆: 西南大学, 2018
HE Y. Screening of Pathogenic Bacteria Recognition Elements and Its Application in Bacterial Detection and Antimicrobial Susceptible Testing[D]. Chongqing: Southwest University, 2018
[34] COX CR, JENSEN KR, MONDESIRE RR, et al. Rapid detection of Bacillus anthracis by γ phage amplification and lateral flow immunochromatography[J]. J Microbiol Methods, 2015, 118: 51
[35] RAJNOVIC D, MUÑOZ-BERBEL X, MAS J. Fast phage detection and quantification: an optical density-based approach[J]. PLoS One, 2019, 14(5):e0216292
[36] SHABANI A, MARQUETTE CA, MANDEVILLE R, et al. Magnetically-assisted impedimetric detection of bacteria using phage-modified carbon microarrays[J]. Talanta, 2013, 116: 1047
[37] LOW HZ, BÖHNLEIN C, SPROTTE S, et al. Fast and easy phage-tagging and live/dead analysis for the rapid monitoring of bacteriophage infection[J]. Front Microbiol, 2020, 11: 602444
[38] 黄豪圣, 王许航, 席静, 等. 荧光标记噬菌体快速检测K1荚膜大肠杆菌方法的建立及应用[J]. 微生物学通报, 2021, 48(9):3218
HUANG HS, WANG XH, XI J, et al. Establishment and application of fluorescence labeled phage for rapid detection of Escherichia coli K1[J]. Microbiol China, 2021, 48(9):3218
[39] NI Q, MEHTA S, ZHANG J. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters[J]. FEBS J, 2018, 285(2):203
[40] SINGH S, HINKLEY T, NUGEN SR, et al. Colorimetric detection of Escherichia coli using engineered bacteriophage and an affinity reporter system[J]. Anal Bioanal Chem, 2019, 411(27):7273
[41] FRANCHE N, VINAY M, ANSALDI M. Substrate-independent luminescent phage-based biosensor to specifically detect enteric bacteria such as E. coli[J]. Environ Sci Pollut Res Int, 2017, 24(1):42
[42] HINKLEY TC, GARING S, SINGH S, et al. Reporter bacteriophage T7(NLC) utilizes a novel NanoLuc: CBM fusion for the ultrasensitive detection of Escherichia coli in water[J]. Analyst, 2018, 143(17):4074
[43] VINAY M, FRANCHE N, GRÉGORI G, et al. phage-based fluorescent biosensor prototypes to specifically detect enteric bacteria such as E. coli and Salmonella enterica Typhimurium[J]. PLoS One, 2015, 10(7):e0131466
[44] SCHOFIELD DA, SHARP NJ, WESTWATER C. Phage-based platforms for the clinical detection of human bacterial pathogens[J]. Bacteriophage, 2012, 2(2):105
[45] XU L, QIU S, YANG L, et al. Aminocyanopyridines as anti-lung cancer agents by inhibiting the STAT3 pathway[J]. Mol Carcinog, 2019, 58(8):1512
[46] ARYA SK, SINGH A, NAIDOO R, et al. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance[J]. Analyst, 2011, 136(3):486
[47] HALKARE P, PUNJABI N, WANGCHUK J, et al. Label-free detection of Escherichia coli from mixed bacterial cultures using bacteriophage T4 on plasmonic fiber-optic sensor[J]. ACS Sens, 2021, 6(7):2720
[48] SHIN HJ, LIM WK. Rapid label-free detection of E. coli using a novel SPR biosensor containing a fragment of tail protein from phage lambda[J]. Prep Biochem Biotechnol, 2018, 48(6):498
[49] HYEON SH, LIM WK, SHIN HJ. Novel surface plasmon resonance biosensor that uses full-length Det7 phage tail protein for rapid and selective detection of Salmonella enterica serovar Typhimurium[J]. Biotechnol Appl Biochem, 2021, 68(1):5
[50] ZHOU Y, MARAR A, KNER P, et al. Charge-directed immobilization of bacteriophage on nanostructured electrode for whole-cell electrochemical biosensors[J]. Anal Chem, 2017, 89(11):5734
[51] SEDKI M, CHEN X, CHEN C, et al. Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms[J]. Biosens Bioelectron, 2020, 148: 111794
[52] 张金玲, 杜祎, 高广恒, 等. 酶电极法测定玉米中黄曲霉毒素B1含量[J]. 山东科学, 2018, 31(1):60
ZHANG JL, DU Y, GAO GH, et al. Determination of afatoxin B1 content in corn by enzyme electrode method[J]. Shandong Sci, 2018, 31(1):60
[53] WANG D, CHEN J, NUGEN SR. Electrochemical detection of Escherichia coli from aqueous samples using engineered phages[J]. Anal Chem, 2017, 89(3):1650
[54] OFIR G, SOREK R. Contemporary phage biology: from classic models to new insights[J]. Cell, 2018, 172(6):1260