Review & Monography

Application of chemical imaging based on vibration spectroscopy in pharmaceutical analysis

Expand
  • 1. Fuzhou Harvester Pharmaceutical Technological Development Co., Ltd., Fuzhou 350100, China;
    2. Chinese Pharmacopoeia Commission, Beijing 100061, China;
    3. China State Institute of Pharmaceutical Industry, Shanghai 201203, China;
    4. Jiangsu Institute for Food and Drug Control, Nanjing 210019, China;
    5. HORIBA (China) Trading Co., Ltd., Beijing Branch, Beijing 100080, China;
    6. HORIBA (China) Trading Co., Ltd., Shanghai 200335, China

Received date: 2023-04-19

  Online published: 2024-06-21

Abstract

Chemical imaging (CI) technology based on vibrational spectroscopy serves as the useful tools for chemical identification by acquiring spatially located spectra and converting into image that visualizing the spatial distribution of chemical compound. Chemical imaging technology has great potential in pharmaceutical research, production, and quality control, as the distribution of active drugs and excipients not only reflects the behavior of drugs during production but also determines their quality attributes, such as component uniformity, particle size, dissolution characteristics, product stability and so on. This article introduces the basic concepts and models of chemical imaging technology and summarizes the application examples of chemical imaging technology in pharmaceutical analysis.

Cite this article

ZHANG Na, XU Xin-yi, WANG Si-huan, CAO Lin, WANG Yu, XIE Zhi-ping, PU Yu-mei, HU En-ping, SHEN Jing . Application of chemical imaging based on vibration spectroscopy in pharmaceutical analysis[J]. Chinese Journal of Pharmaceutical Analysis, 2023 , 43(10) : 1653 -1663 . DOI: 10.16155/j.0254-1793.2023.10.03

References

[1] BARER R, COLE AR, THOMPSON HW. Infra-red spectroscopy with the reflecting microscope in physics, chemistry and biology[J]. Nature, 1949, 163(4136):198
[2] HARTHCOCK MA, ATKIN SC. Imaging with functional group maps using infrared microspectroscopy[J]. Appl Spectrosc, 1988, 42(3):449
[3] TREADO PJ, LEVIN IW, LEWIS EN. Indium antimonide (InSb) focal plane array (FPA) detection for near-infrared imaging microscopy[J]. Appl Spectrosc, 1994, 48(5):607
[4] 柯以侃, 董慧茹. 分析化学手册.3B. 分子光谱分析[M]. 第三版. 北京: 化学工业出版社, 2016: 454
KE YK, DONG HR. Handbook of Analytical Chemistry. 3B. Molecular Spectroscopy[M]. 3rd Ed. Beiing: Chemical Industry Press, 2016: 454
[5] EP 10.0[S]. 2020: 847
[6] GENDRIN C, ROGGO Y, COLLET C. Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review[J]. J Pharm Biomed Anal, 2008, 48(3):533
[7] 路交, 朱姗姗, 崔笑宇, 等. 拉曼光谱成像技术及其在生物医学中的应用[J]. 中国激光, 2018, 45(3):64
LU J, ZHU SS, CUI XY, et al. Raman spectroscopic imaging technology and its biomedical applications[J]. Chin J Lasers, 2018, 45(3):64
[8] JOHNSON WR, WILSON DW, BEARMAN G. All-reflective snapshot hyperspectral imager for infrared applications[J]. Opt Lett, 2005, 30(12):1464
[9] SCHMÄLZLIN E, MORALEJO B, RUTOWSKA M, et al. Raman imaging with a fiber-coupled multichannel spectrograph[J]. Sensors (Basel), 2014, 14(11):21968
[10] FENG W, RUEDA H, FU C, et al. 3D compressive spectral integral imaging[J]. Opt Express, 2016, 24(22):24859
[11] ŠASIC S. An in-depth analysis of Raman and near-infrared chemical images of common pharmaceutical tablets[J]. Appl Spectrosc, 2007, 61(3):239
[12] ŠASIC S. Chemical imaging of pharmaceutical granules by Raman global illumination and near-infrared mapping platforms[J]. Anal Chim Acta, 2008, 611(1):73
[13] 杨仕珉, 吴志生, 李晓盈, 等. 基于近红外成像的黄芩、黄连粉末混合评价研究[C/OL]//中华中医药学会中药分析分会第五届学术交流会论文集. 沈阳: 中华中医药学会[2022-06-05]. http://www.cnki.net
YANG SM, WU ZS, LI XY, et al. Research on the mixed evaluation of Scutellariae Radix and Coptidis Rhizoma powders based on near-infrared imaging[C/OL]//Proceedings of the 5th Academic Exchange Conference of the Chinese Medicine Association Traditional Chinese Medicine Analysis Branch. Shenyang: Chinese Medicine Association Traditional Chinese Medicine [2022-06-13]. http://www.cnki.net
[14] 王逸飞, 章烨雯, 王景雁, 等. 基于近红外化学成像技术的市售凝胶贴膏空间分布均匀性评价方法研究[J]. 中华中医药杂志, 2017, 32(4):1830
WANG YF, ZHANG YW, WANG JY, et al. Study on the evaluation method of commercial cataplasms spatial distribution homogeneity based on near-infrared chemical imaging (NIR-CI) technology[J]. China J Tradit Chin Med Pharm, 2017, 32(4):1830
[15] GENDRIN C, ROGGO Y, COLLET C. Content uniformity of pharmaceutical solid dosage forms by near infrared hyperspectral imaging: a feasibility study[J]. Talanta, 2007, 73(4):733
[16] SARRI B, CANONGE R, AUDIER X, et al. Discriminating polymorph distributions in pharmaceutical tablets using stimulated Raman scattering microscopy[J]. J Raman Spectrosc, 2019, 50(12):1896
[17] CHAN KLA, KAZARIAN SG. Macro FTIR imaging in transmission under a controlled environment[J]. Vib Spectrosc, 2006, 42(1):130
[18] RAFFERTY DW, KOENIG JL. FTIR imaging for the characterization of controlled-release drug delivery applications[J]. J Control Release, 2002, 83(1):29
[19] COUTTS-LENDON CA, WRIGHT NA, MIESO EV, et al. The use of FT-IR imaging as an analytical tool for the characterization of drug delivery systems[J]. J Control Release, 2003, 93(3):223
[20] CHOI DH, KIM KH, PARK JS, et al. Evaluation of drug delivery profiles in geometric three-layered tablets with various mechanical properties, in vitro-in vivo drug release, and Raman imaging[J]. J Control Release, 2013, 172(3):763
[21] GENDRIN C, ROGGO Y, SPIEGEL C, et al. Monitoring galenical process development by near infrared chemical imaging: one case study[J]. Eur J Pharm Biopharm, 2008, 68(3):828
[22] HILDEN LR, POMMIER CJ, BADAWY SIF, et al. NIR chemical imaging to guide/support BMS-561389 tablet formulation development[J]. Int J Pharm, 2008, 353(1-2):283
[23] LI WY, WOLDU A, KELLY R, et al. Measurement of drug agglomerates in powder blending simulation samples by near infrared chemical imaging[J]. Int J Pharm, 2008, 350(1-2):369
[24] SHAH RB, TAWAKKUL MA, KHAN MA. Process analytical technology: chemometric analysis of Raman and near infra-red spectroscopic data for predicting physical properties of extended release matrix tablets[J]. J Pharm Sci, 2007, 96(5):1356
[25] ELLISON CD, ENNIS BJ, HAMAD ML, et al. Measuring the distribution of density and tabletting force in pharmaceutical tablets by chemical imaging[J]. J Pharm Biomed Anal, 2008, 48(1):1
[26] SLIPCHENKO MN, CHEN H, ELY DR, et al. Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy[J]. Analyst, 2010, 135(10):2613
[27] HENSON MJ, ZHANG L. Drug characterization in low dosage pharmaceutical tablets using Raman microscopic mapping[J]. Appl Spectrosc, 2006, 60(11):1247
[28] DOUB WH, ADAMS WP, SPENCER JA, et al. Raman chemical imaging for ingredient-specific particle size characterization of aqueous suspension nasal spray formulations: a progress report[J]. Pharm Res, 2007, 24(5):934
[29] KURIYAMAL A, OZAKI Y. Assessment of active pharmaceutical ingredient particle size in tablets by Raman chemical imaging validated using polystyrene microsphere size standards[J]. AAPS PharmSciTech, 2014, 15(2):375
[30] RODIONOVA OY, HOUMOLLER LP, POMERANTSEV AL, et al. NIR spectrometry for counterfeit drug detection: a feasibility study[J]. Anal Chim Acta, 2005, 549(1):151
[31] RICCI C, NYADONG L, FERNANDEZ FM, et al. Combined fourier-transform infrared imaging and desorption electrospray-ionization linear ion-trap mass spectrometry for analysis of counterfeit antimalarial tablets[J]. Anal Bioanal Chem, 2007, 387(2):551
[32] 王玉, 曹玲, 罗疆南. 显微共聚焦拉曼光谱法检测非法添加的化学壮阳药[J]. 中国药学杂志, 2011, 46(10):789
WANG Y, CAO L, LUO JN. Identification of adulterated PDE5 inhibitors by confocal Raman microscopy[J]. Chin Pharm J, 2011, 46(10):789
[33] 曹玲, 王玉, 罗疆南. 显微共聚焦拉曼检测中药中非法添加的化学降糖药[J]. 药物分析杂志, 2011, 31(3):539
CAO L, WANG Y, LUO JN. Confocal Raman microscopy identification of synthetic hypoglycemic drugs adulterated in Chinese traditional medicines[J]. Chin J Pharm Anal, 2011, 31(3):539
Outlines

/