[1] 李伊娜, 张娜, 刘万卉, 等. 往复筒法在药物溶出度研究中的应用进展[J].药物分析杂志, 2021, 41(2):185
LI YN, ZHANG N, LIU WH, et al. Progress in applications of the reciprocating cylinder apparatus in dissolution testing of drug formulations[J].Chin J Pharm Anal, 2021, 41(2):185
[2] 张春晓, 彭玉帅, 许卉, 等. 流池法的研究进展及应用[J].药物分析杂志, 2021, 41(2):195
ZHANG CX, PENG YS, XU H, et al. Development and application of flow through cell method[J].Chin J Pharm Anal, 2021, 41(2):195
[3] O’FARRELL C, STAMATOPOULOS K, SIMMONS M, et al. In vitro models to evaluate ingestible devices: present status and current trends[J].Adv Drug Deliv Rev, 2021(178): 113924
[4] GRIGNARD E, TAYLOR R, MCALLISTER M, et al. Considerations for the development of in vitro dissolution tests to reduce or replace preclinical oral absorption studies[J].Eur J Pharm Sci, 2017, 99: 193
[5] MUDIE D M, STEWART A M, ROSALES J A, et al. Amorphous solid dispersion tablets overcome acalabrutinib pH effect in dogs[J].Pharmaceutics, 2021, 13(4):557
[6] LI C, YU W, WU P, et al. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract[J].Trends Food Sci Technol, 2020, 96: 114
[7] VATIER J, MALIKOVA-SEKERA E, VITRE MT, et al. An artificial stomach-duodenum model for the in vitro evaluation of antacids[J].Aliment Pharmacol Ther, 2007, 6(4):447
[8] CARINO SR, SPERRY DC, HAWLEY M. Relative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum model[J].J Pharm Sci, 2006, 95(1):116
[9] CARINO SR, SPERRY DC, HAWLEY M. Relative bioavailability of three different solid forms of PNU-141659 as determined with the artificial stomach-duodenum model[J].J Pharm Sci, 2010, 99(9):3923
[10] LEE CM, LUNER PE, LOCKE K, et al. Application of an artificial stomach-duodenum reduced gastric pH dog model for formulation principle assessment and mechanistic performance understanding[J].J Pharm Sci, 2017, 106(8):1987
[11] BHATTACHAR SN, PERKINS EJ, TAN JS, et al. Effect of gastric pH on the pharmacokinetics of a BCS class Ⅱ compound in dogs: utilization of an artificial stomach and duodenum dissolution model and gastroplus,TM simulations to predict absorption[J].J Pharm Sci, 2011, 100(11):4756
[12] POLSTER CS, ATASSI F, WU SJ, et al. Use of artificial stomach-duodenum model for investigation of dosing fluid effect on clinical trial variability[J].Mol Pharm, 2010, 7(5):1533
[13] POLSTER CS, WU SJ, GUEORGUIEVA I, et al. Mechanism for enhanced absorption of a solid dispersion formulation of ly2300559 using the artificial stomach duodenum model[J].Mol Pharm, 2015, 12(4):1131
[14] 缪慧, 阮昊, 陈悦, 等. 生物相关性溶出度方法研究进展[J].中国现代应用药学, 2018, 35(1):138
MIU H, RUAN H, CHEN Y, et al. Research advances of bio-relevance dissolution method[J].Chin J Mod Appl Pharm, 2018, 35(1):138
[15] TAKEUCHI S, TSUME Y, AMIDON G E, et al. Evaluation of a three compartment in vitro gastrointestinal simulator dissolution apparatus to predict in vivo dissolution[J].J Pharm Sci, 2014, 103(11):3416
[16] HENS B, KATAOKA M, UEDA K, et al. Biopredictive in vitro testing methods to assess intestinal drug absorption from supersaturating dosage forms[J].J Drug Deliv Sci Technol, 2020, 56: 101275
[17] MUDIE DM, BUCHANAN S, STEWART AM, et al. A novel architecture for achieving high drug loading in amorphous spray dried dispersion tablets[J].Int J Pharm, 2020, 578: 100042
[18] TSUME Y, MATSUI K, SEARLS AL, et al. The impact of supersaturation level for oral absorption of BCS class Ⅱb drugs, dipyridamole and ketoconazole, using in vivo predictive dissolution system: gastrointestinal simulator (GIS)[J].Eur J Pharm Sci, 2017, 102: 126
[19] MATSUI K, TSUME Y, AMIDON GE, et al. In vitro dissolution of fluconazole and dipyridamole in gastrointestinal simulator (GIS), predicting in vivo dissolution and drug-drug interaction caused by acid-reducing agents[J].Mol Pharm, 2015, 12(7):2418
[20] MATSUI K, TSUME Y, AMIDON GE, et al. The evaluation of in vitro drug dissolution of commercially available oral dosage forms for itraconazole in gastrointestinal simulator with biorelevant media[J].J Pharm Sci, 2016, 105(9):2804
[21] AMIDON GL, TSUME Y. Oral product input to the GI tract: GIS an oral product performance technology[J].Front Chem Sci Eng, 2017, 11(4):516
[22] GAN Y, ZHANG X, XU D, et al. Evaluating supersaturation in vitro and predicting its performance in vivo with biphasic gastrointestinal simulator: a case study of a BCS ⅡB drug[J].Int J Pharm, 2020, 578: 119043
[23] DOLUISIO JT, SWINTOSKY JV. Drug partitioning Ⅱ[J].J Pharm Sci, 1964, 53(6):597
[24] HEIGOLDT U, SOMMER F, DANIELS R, et al. Predicting in vivo absorption behavior of oral modified release dosage forms containing pH-dependent poorly soluble drugs using a novel pH-adjusted biphasic in vitro dissolution test[J].Eur J Pharm Biopharm, 2010, 76(1):105
[25] VANGANI S, LI X, ZHOU P, et al. Dissolution of poorly water-soluble drugs in biphasic media using USP 4 and fiber optic system[J].Clin Res Regul Aff, 2009, 26(1-2):8
[26] PESTIEAU A, EVRARD B. In vitro biphasic dissolution tests and their suitability for establishing in vitro-in vivo correlations: a historical review[J].Eur J Pharm Sci, 2017, 102: 203
[27] DENG J, STAUFENBIEL S, BODMEIER R. Evaluation of a biphasic in vitro dissolution test for estimating the bioavailability of carbamazepine polymorphic forms[J].Eur J Pharm Sci, 2017, 105: 64
[28] THIRY J, BROZE G, PESTIEAU A, et al. Investigation of a suitable in vitro dissolution test for itraconazole-based solid dispersions[J].Eur J Pharm Sci, 2016, 85: 94
[29] JANKOVIC S, O’DWYER PJ, BOX KJ, et al. Biphasic drug release testing coupled with diffusing wave spectroscopy for mechanistic understanding of solid dispersion performance[J].Eur J Pharm Sci, 2019, 137: 105001
[30] SARODE AL, WANG P, OBARA S, et al. Supersaturation, nucleation, and crystal growth during single-and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs[J].Eur J Pharm Biopharm, 2014, 86(3):351
[31] XU H, KRAKOW S, SHI Y, et al. In vitro characterization of ritonavir formulations and correlation to in vivo performance in dogs[J].Eur J Pharm Sci, 2018, 115: 286
[32] GINSKI M. Prediction of dissolution-absorption relationships from a dissolution/Caco-2 system[J].Int J Pharm, 1999, 177(1):117
[33] MOTZ SA, SCHAEFER UF, BALBACH S, et al. Permeability assessment for solid oral drug formulations based on Caco-2 monolayer in combination with a flow through dissolution cell[J].Eur J Pharm Biopharm, 2007, 66(2):286
[34] LAMBERTI G, CASCONE S, IANNACCONE M, et al. In vitro simulation of drug intestinal absorption[J].Int J Pharm, 2012, 439(1-2):165
[35] HATE SS, REUTZEL-EDENS SM, TAYLOR LS. Absorptive dissolution testing of supersaturating systems: impact of absorptive sink conditions on solution phase behavior and mass transport[J].Mol Pharm, 2017, 14(11):4052
[36] HATE SS, REUTZEL-EDENS SM, TAYLOR LS. Insight into amorphous solid dispersion performance by coupled dissolution and membrane mass transfer measurements[J].Mol Pharm, 2019, 16(1):448
[37] ZHONG C, LANGRISH T. A comparison of different physical stomach models and an analysis of shear stresses and strains in these system[J].Food Res Int, 2020, 135: 109296
[38] SENSOY I. A review on the food digestion in the digestive tract and the used in vitro models[J].Curr Res Food Sci, 2021(4): 308
[39] MERCURI A, PASSALACQUA A, WICKHAM MSJ, et al. The effect of composition and gastric conditions on the self-emulsification process of ibuprofen-loaded self-emulsifying drug delivery systems: a microscopic and dynamic gastric model study[J].Pharm Res, 2011, 28(7):1540
[40] VARDAKOU M, MERCURI A, BARKER SA, et al. Achieving antral grinding forces in biorelevant in vitro models: comparing the usp dissolution apparatus Ⅱ and the dynamic gastric model with human in vivo data[J].AAPS Pharm Sci Tech, 2011, 12(2):620
[41] VARDAKOU M, MERCURI A, NAYLOR TA, et al. Predicting the human in vivo performance of different oral capsule shell types using a novel in vitro dynamic gastric model[J].Int J Pharm, 2011, 419(1-2):192
[42] MANN JC, PYGALL SR. A formulation case study comparing the dynamic gastric model with conventional dissolution methods[J].Dissol Technol, 2012, 19(4):14
[43] MASON LM, CHESSA S, HUATAN H, et al. Use of the dynamic gastric model as a tool for investigating fed and fasted sensitivities of low polymer content hydrophilic matrix formulations[J].Int J Pharm, 2016, 510(1):210
[44] ABRAHAMSSON B, PAL A, SJÖBERG M, et al. A novel in vitro and numerical analysis of shear-induced drug release from extended-release tablets in the fed stomach[J].Pharm Res, 2005, 22(8):1215
[45] GARBACZ G, WEDEMEYER RS, NAGEL S, et al. Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses[J].Eur J Pharm Biopharm, 2008, 70(2):421
[46] WEITSCHIES W, KOSCH O, MONNIKES H, et al. Magnetic marker monitoring: an application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behavior of magnetically marked solid dosage forms[J].Adv Drug Deliv Rev, 2005, 57(8):1210
[47] SCHNEIDER F, BEECK R, HOPPE M, et al. In vitro simulation of realistic gastric pressure profiles[J].Eur J Pharm Sci, 2017, 107: 71
[48] GARBACZ G, WEITSCHIES W. Investigation of dissolution behavior of diclofenac sodium extended release formulations under standard and biorelevant test conditions[J].Drug Dev Ind Pharm, 2010, 36(5):518