基于UPLC-Q TOF MS联合多元统计分析及分子网络的百合及卷丹化学成分差异性研究*

付钰, 王碧莹, 张欣亚, 荣晓庆, 陈随清

药物分析杂志 ›› 2024, Vol. 44 ›› Issue (10) : 1699-1712.

PDF(10218 KB)
PDF(10218 KB)
药物分析杂志 ›› 2024, Vol. 44 ›› Issue (10) : 1699-1712. DOI: 10.16155/j.0254-1793.2023-0747
成分分析

基于UPLC-Q TOF MS联合多元统计分析及分子网络的百合及卷丹化学成分差异性研究*

  • 付钰1,2, 王碧莹1, 张欣亚1, 荣晓庆1, 陈随清1,3**
作者信息 +

Multivariate statistical analysis combined with molecular networking to analysis the components between the bulbus of Lilium lancifolium Thunb. and L. brownii F. E. Brown var. viridulum Baker*

  • FU Yu1,2, WANG Bi-ying1, ZHANG Xin-ya1, RONG Xiao-qing1, CHEN Sui-qing1,3**
Author information +
文章历史 +

摘要

目的: 采用超高效液相色谱串联四极杆飞行时间质谱(UPLC-Q TOF MS)技术,联合多元统计分析和分子网络分析,解析百合及卷丹化学成分的差异性。方法: 采用Agilent poroshell 120 EC-C18(100 mm×2.1 mm, 2.7 μm)色谱柱,以乙腈(A)-0.01%甲酸水溶液(B)为流动相,流速0.3 mL·min-1,柱温30 ℃,进样量1 μL;电喷雾离子源,正、负离子模式检测,扫描范围m/z 80~1 100,分析新鲜百合及卷丹样品。数据采集后进行化学轮廓分析,首先运用主成分分析(PCA)比较二者化学轮廓差异性,发现百合及卷丹在化学成分上存在明显差异。进而通过正交偏最小二乘法(OPLS-DA)结合单因素分析对百合和卷丹的差异化合物群进行筛选。最后,以差异化合物群中各成分MS/MS碎片信息为依据,通过GNPS平台构建分子网络,并通过Cytoscape 3.7.2软件筛选结构相似的分子簇并绘制可视化网络图。通过对照品比对、网络数据库检索等方式鉴定各分子簇“种子”成分,以“种子”成分为线索解析不同来源百合差异成分群结构组成。结果: 百合和卷丹主要在酚酸甘油酯、生物碱和皂苷成分群中存在差异,其中生物碱类为百合的优势成分群,而甾体皂苷类为卷丹的优势成分群。并通过分子网络在二者的差异成分群中鉴定出31个化合物,其中包括酚酸甘油酯类18个、生物碱类7个及皂苷类成分6个。结论: 百合及卷丹在化学成分上存在较大差异,差异成分对于药材的品质,在复方中的功效和含复方临床疗效之间的关系还需进一步研究。本研究为百合的合理利用及精准开发提供数据参考,也为中药化学成分表征及快速鉴别提供借鉴。

Abstract

Objective: To explore the difference of chemical composition between the bulbus of Lilium lancifolium Thunb. and L. brownii F. E. Brown var. viridulum Baker, the chemical profile of Lilii Bulbus was acquired by ultra-high performance liquid chromatography with quadrupole-time of flight mass spectrometry (UPLC-Q TOF MS), then the components of all samples was analyzed by chemometrics combined with molecular networking. Methods: The Agilent poroshell 120 EC-C18 column (100 mm×2.1 mm, 2.7 μm) was adopt, and the mobile phase was acetonitrile-0.1% formic acid aqueous solution with gradient elution. The flow rate was 0.3 mL·min-1, the column temperature was 30 ℃ and the injection volume was 1 μL. The mass spectra were acquired in the positive and negative modes in the mass range of m/z 80-1 100. Principal component analysis (PCA), partial least squares-discriminant analysis (OPLS-DA) and single factor analysis were used for screening the differential components. Then GNPS molecular network was created according to the similarity of MS/MS fragmentation modes. Cytoscape 3.7.2 software was used to screen molecular clusters with similar structures. Results: Phenolic acid glycerides, alkaloids and steroid saponins were screened as the differential components groups. Among these components, the bulbus of Lilium lancifolium Thunb. was rich in steroid saponins, while the bulbus of L. brownii F. E. Brown var. viridulum Baker was rich in alkaloids. Besides, 31 components, including 18 phenolic acid glycerides, 7 alkaloids and 6 steroid saponins were identified in the three differential components groups. Conclusion: This method can provide reference data for the quality control and pharmacodynamic substances of Lilii Bulbus, and provide reference for the rapid qualitative analysis of chemical components of traditional Chinese medicine.

关键词

百合 / 卷丹 / 液质联用 / 多元统计 / 分子网络 / 成分差异

Key words

bulbus of Lilium lancifolium Thunb. / bulbus of L. brownii F. E. Brown var. viridulum Baker / UPLC-MS / multivariate statistical analysis / molecular networking / composition differences

引用本文

导出引用
付钰, 王碧莹, 张欣亚, 荣晓庆, 陈随清. 基于UPLC-Q TOF MS联合多元统计分析及分子网络的百合及卷丹化学成分差异性研究*[J]. 药物分析杂志, 2024, 44(10): 1699-1712 https://doi.org/10.16155/j.0254-1793.2023-0747
FU Yu, WANG Bi-ying, ZHANG Xin-ya, RONG Xiao-qing, CHEN Sui-qing. Multivariate statistical analysis combined with molecular networking to analysis the components between the bulbus of Lilium lancifolium Thunb. and L. brownii F. E. Brown var. viridulum Baker*[J]. Chinese Journal of Pharmaceutical Analysis, 2024, 44(10): 1699-1712 https://doi.org/10.16155/j.0254-1793.2023-0747
中图分类号: R917   

参考文献

[1] 刘浩, 钟灿, 金剑, 等. 百合道地药材的历史沿革与品质评价研究[J]. 中国现代中药, 2020, 22(9):1434
LIU H, ZHONG C, JIN J, et al. Research on historical evolution and quality evaluation of Dao-di herbs of Lilii Bulbus[J]. Mod Chin Med, 2020, 22(9):1434
[2] 张卫, 王嘉伦, 张志杰, 等. 经典名方药用百合本草考证[J]. 中国中药杂志, 2019, 44(22):5007
ZHANG W, WANG JL, ZHANG ZJ, et al. Herbal textual research on traditional Chinese medicine “Baihe”(Lilii Bulbus)[J]. China J Mater Med, 2019, 44(22):5007
[3] 王昌华, 舒抒, 银福军, 等. 药用百合正源考证研究[J]. 中国中药杂志, 2018, 43(8):1732
WANG CH, SHU S, YIN FJ, et al. Textual research on origin and genuine of Lilii Bulbus[J]. China J Chin Mater Med, 2018, 43(8):1732
[4] 李卫民, 孟宪纾,高英. 中药百合的本草考证[J]. 中国中药杂志, 1990, 15(10):3
LI WM, MENG XS, GAO Y. Herbalogical studies on Bulbus Lilii[J]. China J Chin Mater Med, 1990, 15(10):3
[5] 童巧珍. 湖南省药用百合种质资源的评价与利用研究[D]. 长沙: 湖南农业大学, 2009
TONG QZ. Studies on the Germplasm Resources Evaluation Andutilization on Medical Lily in Hunan[D]. Changsha: Hunan Agricultural University, 2009
[6] 周中流, 石任兵, 刘斌,等. 卷丹甾体皂苷和酚类成分及其抗氧化活性研究[J]. 中药材, 2011, 42(1):21
ZHOU ZL, SHI RB, LIU B, et al. Steroidal saponins and phenylic constituents from Lilium lancifolium and their anti-oxidant activities[J]. Chin Tradit Herb Drugs, 2011, 42(1):21
[7] 罗林明, 裴刚, 覃丽, 等. 中药百合化学成分及药理作用研究进展[J]. 中药新药与临床药理, 2017, 28(6):824
LOU LM, PEI G, QIN L, et al. Research progress on chemical constituents and pharmacological effects of medicinal Lilium plants[J]. Tradit Chin Drug Res Clin Pharmacol, 2017, 28(6):824
[8] 黄江剑, 高英, 李卫民, 等. HPLC-ELSD测定不同产地百合中薯蓣皂苷的含量[J]. 中国实验方剂学杂志, 2011, 17(5):110
HUANG JJ, GAO Y, LI WM, et al. Quantitative determination of dioscin in Bulbus Lilii by HPLC-ELSD[J]. Chin J Exp Tradit Med Form, 2011, 17(5):110
[9] 张黄琴, 严辉, 钱大玮, 等. 不同产地百合药材中8种活性成分的分析与评价[J]. 中国实验方剂学杂志, 2017, 42(2):311
ZHANG HQ, YAN H, QIAN DW, et al. Analysis and evaluation of eight active ingredients in Lilium lancifolium from different regions[J]. Chin J Exp Tradit Med Form, 2017, 42(2):311
[10] 刘湘丹, 陈勋, 刘畅宇, 等. 不同来源百合药材的质量评价及分析[J]. 湖南中医药大学学报, 2019, 39(4):480
LIU XD, CHEN X, LIU CY, et al. Quality evaluation and analysis of Lilii Bulbus from different sources[J]. J Hunan Univ Chin Med, 2019, 39(4):480
[11] KONG Y, WANG H, LANG L, et al. Metabolome-based discrimination analysis of five Lilium Bulbs associated with differences in secondary metabolites[J]. Molecules, 2021, 26(5):1340
[12] 王迪, 俞佳, 詹固, 等. 液质联用技术在中药研究中的应用进展[J]. 中华中医药学刊, 2022, 40(2):68
WANG D, YU J, ZHAN G, et al. Advances in application of liquid chromatography-mass spectrometry technology in study of traditional Chinese medicine[J]. Chin Arch Tradit Chin Med, 2022, 40(2):68
[13] 范胜贤, 袁恩, 梅慧, 等. 基于UPLC-Q-TOF-MS/MS技术的黄檀属植物新黄酮类化合物质谱裂解规律研究[J]. 药物分析杂志, 2023, 43(8):1312
FAN SX, YUAN E, MEI H, et al. Fragmentation pathway of neoflavonoid in Dalbergia genus using ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry[J]. Chin J Pharm Anal, 2023, 43(8):1312
[14] 胡晓茹, 聂黎行, 何风艳, 等. 基于LC-MS/MS特征图谱技术牛黄清心丸(局方)中牛黄及代用品的鉴别研究[J]. 药物分析杂志, 2022, 42(10):1808
HU XR, NIE LX, HE FY, et al. Identification of Bovis Calculus and its substitutes in Niuhuang Qingxin pills (prescription of the bureau) by LC-MS/MS[J]. Chin J Pharm Anal, 2022, 42(10):1808
[15] MENG Y, LIANG Z, ZHANG L, et al. Identification of three types of O-glycosylated flavonoids in Dendrobium loddigesii, Dendrobium primulinum, Dendrobium crepidatum, Dendrobium porphyrochilum and Dendrobium hancockii by MS[J]. Rapid Commun Mass Spectrom,2022, 37(2):e9421
[16] 杨军, 刘心昱, 许国旺. 基于质谱数据的计算代谢组学方法学研究进展[J]. 中国科学: 化学, 2022, 52(9):1580
YANG J, LIU XY, XU GW. New advances in mass spectrometry data-based computational metabolomics methods[J]. Sci Sin (Chem), 2022, 52(9):1580
[17] 覃舒然, 刘海翠, 李大山, 等. 质谱分子网络在天然产物结构研究中的应用[J]. 天然产物研究与开发, 2022, 34(11):1978
QIN SR, LIU HC, LI DS, et al. Application of mass spectrometry molecular networking in the study of natural product structure[J]. Nat Prod Res Dev, 2022, 34(11):1978
[18] NOTHIAS LF, NOTHIAS-ESPOSITO M, DA SILVA R, et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation[J]. J Nat Prod, 2018, 81(4):758
[19] ARON AT, GENTRY EC, MCPHAIL KL, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS[J]. Nat Protoc, 2020, 15(6):1954
[20] 赵康宏, 周峰, 严思恩, 等. 基于HPLC-Q-TOF-MS和HS-SPME-GC-MS法分析龙牙百合中的化合物[J]. 天然产物研究与开发, 2020, 32(8):1331
ZHAO KH, ZHOU F, YAN SE, et al. The analysis of compounds from Longya lily via HPLC-Q-TOF-MS and HS-SPME-GC-MS[J]. Nat Prod Res Dev, 2020, 32(8):1331
[21] 潘清平, 周日宝, 贺又舜, 等. 龙山县百合种植基地概况[J]. 湖南中医药导报, 2003, 9(6):56
PAN QP, ZHOU RB, HE YS, et al. Investigation of lily bulb implantation garden in Longshan County[J]. Hunan Guid J Tradit Chin Med Pharmacol, 2003, 9(6):56
[22] KALALINIA F, KARIMI-SANI I. Anticancer properties of solamargine: a systematic review[J]. Phytother Res, 2017, 31(6):858
[23] EL-HAWARY SS, MOHAMMED R, ABOUZID SF, et al. Solamargine production by a fungal endophyte of Solanum nigrum[J]. J Appl Microbiol, 2016, 120(4):900
[24] 曹春艳, 张家祺, 张立超. 澳洲茄边碱抗肿瘤作用及其机制研究进展[J]. 中国医院药学杂志, 2022, 42(20):2188
CAO CY, ZHANG JQ, ZHANG LC. Research progress on antitumor effect and mechanism of solamargine[J]. Chin J Hosp Pharm, 2022, 42(20):2188
[25] 唐朝辉, 张岩, 李娜, 等. 澳洲茄边碱提取纯化工艺及其抗肿瘤作用的研究[J]. 中国中药杂志, 2011, 36(16):2192
TANG CH, ZHANG Y, LI N, et al. Extraction, purification technology and antineoplastic effects of solamargine[J]. China J Chin Mater Med, 2011, 36(16):2192
[26] 陈朋伟. 薯蓣皂苷和澳洲茄边碱的合成及其结构优化[D]. 青岛: 中国海洋大学, 2013
CHEN PW. Synthesis and Structural Modifications of Dioscin and Solamargine[D]. Qingdao: Ocean University of China, 2013

基金

*河南省高等学校重点科研项目(24A360004);河南省中医药科学研究专项课题重大专项(2022ZYZD18)

PDF(10218 KB)

185

Accesses

0

Citation

Detail

段落导航
相关文章

/