基于多酸主客体材料在检测香草酸中的应用*

李娜, 陈世旭, 张聪, 赵海燕, 崔敏, 孙宝, 李化凡, 张焕

药物分析杂志 ›› 2024, Vol. 44 ›› Issue (9) : 1638-1645.

PDF(7329 KB)
PDF(7329 KB)
药物分析杂志 ›› 2024, Vol. 44 ›› Issue (9) : 1638-1645. DOI: 10.16155/j.0254-1793.2024-0113
质量评价·技术研发

基于多酸主客体材料在检测香草酸中的应用*

  • 李娜1, 陈世旭1, 张聪1**, 赵海燕1**, 崔敏1, 孙宝1, 李化凡1, 张焕2**
作者信息 +

Determination of vanillic acid based on POM-host guest materials*

  • LI Na1, CHEN Shi-xu1, ZHANG Cong1**, ZHAO Hai-yan1**, CUI Min1, SUN Bao1, LI Hua-fan1, ZHANG Huan2**
Author information +
文章历史 +

摘要

目的: 采用多金属氧酸盐基主客体框架材料修饰玻碳电极测定香草酸的浓度。方法: 按照多酸基主客体框架材料合成方法,选择钒取代的磷钼酸(PMoV)与MIL-100(Fe)复合,合成了一种稳定的基于多酸的主客体金属有机框架材料PMoV@MIL-100(Fe)。通过溶液法将金属纳米粒子与PMoV@MIL-100(Fe)复合,制备功能性复合材料PMoV@MIL-100(Fe)@Pt,并用来修饰玻碳电极,检测香草酸,制备香草酸电化学传感器。结果: 在最佳条件下,该香草酸电化学传感器表现出宽的线性范围和较高灵敏度。可以在温和的条件下对香草酸进行快速灵敏的检测,且具有出色的稳定性。结论: 本实验构建的电化学传感器为检测香草酸提供了新思路。

Abstract

Objective: To determine the concentration of vanillic acid by polyoxometal-based host-guest frame material modified glass carbon electrode. Methods: A stable polyacid-based host-guest metal-organic framework material PMoV@MIL-100(Fe) was synthesized by combining vanadium-substituted phosphomolybdic acid (PMoV) with MIL-100(Fe) according to the synthesis method of polyacid-based host-guest framework materials. Functional composite material PMoV@MIL-100(Fe)@Pt was prepared by composite metal nanoparticles with PMoV@MIL-100(Fe) by solution method, and was used to modify glassy carbon electrode, detect vanillic acid, and prepare vanillic acid electrochemical sensor. Results: Under optimal conditions, the vanillic acid electrochemical sensor showed wide linear range and high sensitivity. Rapid and sensitive detection of vanillic acid could be performed under mild conditions with excellent stability. Conclusion: The electrochemical sensor constructed in this experiment provides a new idea for the detection of vanillic acid.

关键词

多金属氧酸盐 / 香草酸 / 电化学传感器 / 主客体 / 多金属氧酸盐的金属有机骨架结构

Key words

polyoxometallate / vanillic acid / electrochemical sensor / host-guest / POMOFs

引用本文

导出引用
李娜, 陈世旭, 张聪, 赵海燕, 崔敏, 孙宝, 李化凡, 张焕. 基于多酸主客体材料在检测香草酸中的应用*[J]. 药物分析杂志, 2024, 44(9): 1638-1645 https://doi.org/10.16155/j.0254-1793.2024-0113
LI Na, CHEN Shi-xu, ZHANG Cong, ZHAO Hai-yan, CUI Min, SUN Bao, LI Hua-fan, ZHANG Huan. Determination of vanillic acid based on POM-host guest materials*[J]. Chinese Journal of Pharmaceutical Analysis, 2024, 44(9): 1638-1645 https://doi.org/10.16155/j.0254-1793.2024-0113
中图分类号: R 917   

参考文献

[1] KAUR J, GULATI M, SINGH SK, et al. Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential[J]. Trends Food Sci Technol, 2022, 122: 187
[2] KIOKIASi S, PROESTOS C, OREOPOULOU V,et al. Phenolic acids of plant origin—A review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties[J]. Foods, 2020, 9 (4): 534
[3] BUFFON E, STRADIOTTO NR,et al. A molecularly imprinted polymer on reduced graphene oxide-gold nanoparticles modified screen-printed electrode for selective determination of ferulic acid in orange peels[J]. Microchem J, 2021, 167: 106339
[4] 吴心悦, 丁可欣, 葛改变, 等. 胡黄连提取物化学指示性成分与感官指标变化规律研究[J]. 中草药, 2023, 54(24): 8064
WU XY, DING KX, GE GB,et al. Change rules of chemical indicative components and sensory indexes of Picrorhizae Rhizoma extracts[J]. Chin Tradit Herb Drugs, 2023, 54(24): 8064
[5] MORENO GR, JUAN ME, PLANAS JM,et al. Table olive polyphenols: A simultaneous determination by liquid chromatography-mass spectrometry[J]. J Chromatogr A, 2020, 1609: 460434
[6] LEE J, CHAN BLS, MITCHELL AE,et al. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS) [J]. Food Chem, 2017, 215: 301
[7] BARBARO E, FELTRACCO M, SPAGNESI A,et al. Fast liquid chromatography coupled with tandem mass spectrometry for the analysis of vanillic and syringic acids in Ice cores[J]. Anal Chem, 2022, 94 (13): 5344
[8] LAHOUIDAK S, SALGHI R, ZOUGAGH M,et al. Capillary electrophoresis method for the discrimination between natural and artificial vanilla flavor for controlling food frauds[J]. Electrophoresis, 2018, 39 (13): 1628
[9] ABSOLMHAMMAD ZH, MAHMOUDI KF, RAHMATI M. Utilizing a nano-sorbent for the selective solid-phase extraction of vanillic acid prior to its determination by photoluminescence spectroscopy[J]. Luminescence, 2014, 29 (8): 1162
[10] GORSKI Ł, SORDON W, JAKUBOWSKA M, Voltammetric determination of ternary phenolic antioxidants mixtures with peaks separation by ICA[J]. J Electrochem Soc, 2016, 164 (2): 42
[11] ZAGORAIOS D, IOAKEIMIDIS C, KYRIAKOU G,et al. Glassy carbon electrochemical sensor for gallic and vanillic acid detection in aqueous solutions[J]. Appl Sci, 2021, 11 (17): 8045
[12] LI X, GAO Y, XIONG, H,et al. The electrochemical redox mechanism and antioxidant activity of polyphenolic compounds based on inlaid multi-walled carbon nanotubes-modified graphite electrode[J]. Open Chem, 2021, 19 (1): 961
[13] CHEN L, CHAISIWAMONGKHOL K, CHEN Y. Rapid electrochemical detection of vanillin in natural Vanilla[J]. Electroanalysis, 2019, 31 (6): 1067
[14] 孔祥宇, 廖力, 卢灿忠, 等. 共价有机框架-杂多酸复合材料用于非均相催化烯烃环氧化[J]. 高等学校化学学报, 2023, 44(12): 282
KONG XY, LIAO L, LU CZ,et al. Application of covalent organic framework-polyoxometalates composites in heterogeneous catalytic epoxidation of olefins[J]. Chem J Chin Univ, 2023, 44(12):282
[15] GAO Y, TIAN M,JIA Y,et al. Polyoxometalates as catalysts for fluorescence amplification in rapid and sensitive detection of artemisinin[J]. Anal Chim Acta, 2021, 1143: 101
[16] BHATTACHARYA S, AYASS WW, TAFFA DH,et al. Polyoxopalladate-loaded metal-organic framework (POP@MOF): synthesis and heterogeneous catalysis[J]. Inorg Chem, 2020, 59 (15): 10512
[17] GUEDES G, WANG S, SANTOS HA,et al. Polyoxometalate composites in cancer therapy and diagnostics[J]. Eur J Inorg Chem, 2020, 2020 (22): 2121
[18] LU YK, CUI XB, CHEN Y,et al. {XW12O40 [Cu(en)2(H2O)]3} (X1/4V,Si): two novel tri-supported Keggin POMs with transition metal complexes[J]. J Solid State Chem, 2009, 182, 2111
[19] YU S, ZHAO X, SU G,et al. Synthesis and electrocatalytic performance of a P-Mo-V Keggin heteropolyacid modified Ag@ Pt/MWCNTs catalyst for oxygen reduction in proton exchange membrane fuel cell[J]. Ionics, 2019, 25: 5141.
[20] VANHAECHT S, QUANTEN T, PARAC-VOGT T.A mild post-functionalization method for the vanadium substituted P2W15V3 Wells-Dawson polyoxometalate based on a copper catalyzed azide-alkyne cycloaddition[J]. Dalton Transac, 2017, 46 (31): 10215
[21] LI S, MA H, O'HALLORAN KP,et al. Enhancing characteristics of a composite film by combination of vanadium-substituted molybdophosphate and platinum nanoparticles for an electrochemical sensor[J]. Electrochim Acta, 2013, 108: 717
[22] DING YH, PENG J, KHAN SU,et al. A new polyoxometalate (POM)-based composite: fabrication through POM-assisted polymerization of dopamine and properties as anode materials for high-performance lithium-ion batteries[J]. Chem A Eur J, 2017, 23 (43): 10338
[23] ZHANG Y, AN C W, ZHANG D,et al. Photocatalytic activity of vanadium-substituted polyoxometalate doped magnetic carbon nitride towards antibiotics[J]. Russ J Inorg Chem, 2021, 66 (5): 679
[24] CANIONI R, ROCH-MARCHAL C, SECHERESSE F,et al. Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100 (Fe) [J]. J Mater Chem, 2011, 21 (4): 1226
[25] ZHU Y, ZHOU S, ZHU J,et al. Mesoporous carbon decorated with MIL-100 (Fe) as an electrochemical platform for ultrasensitive determination of trace cadmium and lead ions in surface water[J]. Ecotoxicol Environ Saf, 2022, 243: 113987
[26] LIU X, CUI G, DONG L, et al. Synchronous electrochemical detection of dopamine and uric acid by a PMo12@ MIL-100 (Fe)@ PVP nanocomposite[J]. Anal Biochem, 2022, 648: 114670
[27] GOVINDHAN M, LIU Z, CHEN A, Design and electrochemical study of platinum-based nanomaterials for sensitive detection of nitric oxide in biomedical applications[J]. Nanomaterials, 2016, 6 (11): 211
[28] ZHANG C, CUI M, REN J, et al. Facile synthesis of novel spherical covalent organic frameworks integrated with Pt nanoparticles and multiwalled carbon nanotubes as electrochemical probe for tanshinol drug detection[J]. Chem Eng J, 2020, 401:126025
[29] ZHANG C, REN J, XING Y, et al. Fabrication of hollow ZnO-Co3O4 nanocomposite derived from bimetallic-organic frameworks capped with Pd nanoparticles and MWCNTs for highly sensitive detection of tanshinol drug[J]. Mater Sci Eng: C, 2020, 108: 110214
[30] ZHANG M, ZHANG AM, WANG XX,et al. Encapsulating ionic liquids into POM-based MOFs to improve their conductivity for superior lithium storage[J]. J Mater Chem A, 2018,6:8735
[31] ZHAO X, DU Y, YE W, et al. Sensitive determination of thymol based on CeO2 nanoparticle-decorated graphene hybrid film[J]. New J Chem, 2013, 37 (12): 4045

基金

*河北省教育厅 (BJK2023068);河北省省级科技计划项目 (226Z7715G);河北省中医药管理局科研计划项目(2023039)

PDF(7329 KB)

93

Accesses

0

Citation

Detail

段落导航
相关文章

/