生物检定

细胞因子微球检测技术测定异种脱细胞真皮基质口腔修复膜的细胞因子水平*

展开
  • 山东省医疗器械产品质量检验中心, 国家药品监督管理局生物材料器械安全性评价重点实验室, 山东省医疗器械生物学评价重点实验室, 济南 250101
第一作者: Tel: (0531)82682916;E-mail: 521keren@sina.com
** Tel: (0531)82682916;E-mail: 521keren@sina. com

收稿日期: 2020-04-20

  网络出版日期: 2024-05-31

基金资助

* “十三五”国家重点研发专项支持(No. 2016YFC1103202)

Determination of cytokine levels in dental restoration membrane of acellular dermal matrix by cytometric bead array*

Expand
  • Shandong Province Inspection Center for Medical Devices, NMPA Key Laboratory for Safety Evaluation of Biomaterials and MedicalDevices, Shandong Key Laboratory of Biological Evaluation for Medical Devices, Jinan 250101, China

Received date: 2020-04-20

  Online published: 2024-05-31

摘要

目的: 采用细胞因子微球检测技术测定异种脱细胞真皮基质口腔修复膜免疫评价中细胞因子的含量。方法: 将异种脱细胞真皮基质口腔修复膜为试验样品, 按照高、中、低剂量组植入至Balb/C 小鼠皮下28 d。28 d 后用细胞因子微球检测技术测定IL-1α、IL-1β、IL-6、IL-10、IL-17A、IL-23、肿瘤坏死因子α(TNF-α)、γ 干扰素(IFN-γ)、β 干扰素(IFN-β)、单核细胞趋化蛋白1(MCP-1)、粒细胞-巨噬细胞集落刺激因子(GM-CSF), 将试验组与对照组的数据进行统计学分析。结果: 阳性对照组中IL-1α、IL-1β、IL-6、IL-17A、TNF-α、IFN-γ、MCP-1、GM-CSF 含量显著性高于假手术组(P<0. 01), 而IL-10、IL-23、IFN-β 含量未见明显差异;被测样品植入试验组中, 除MCP-1 和TNF-α 高剂量组显著性高于假手术组(分别为P<0. 01 和P<0. 05), 其他组的IL-1α、IL-1β、IL-6、IL-10、IL-17A、IL-23、TNF-α、IFN-γ、IFN-β、MCP-1、GM-CSF 含量没有明显变化(P>0. 05)。结论: 采用细胞因子微球检测技术测定细胞因子水平, 异种脱细胞真皮基质口腔修复膜对机体细胞因子无明显影响。

本文引用格式

侯丽, 王国伟, 乔春霞, 孙令骁, 黄经春 . 细胞因子微球检测技术测定异种脱细胞真皮基质口腔修复膜的细胞因子水平*[J]. 药物分析杂志, 2021 , 41(3) : 484 -490 . DOI: 10.16155/j.0254-1793.2021.03.14

Abstract

Objective: To determine the cytokine levels in immunity evaluation of dental restoration membrane of xenogeneic acellular dermal matrix using cytometric beads array(CBA). Methods: The dental restoration membrane of xenogeneic acellular dermal matrix was selected as a test sample and implanted into Balb/C mice IL-6, IL-10, IL-17A, IL-23, TNF-α, IFN-γ, IFN-β, MCP-1 and GM-CSF were measured by CBA. The data of the test group and the control group were analyzed statistically. Results: Compared with the negative control group, there was no significant difference in the IL-10、IL-23、IFN-β content in the positive control group, while the IL-1α, IL-1β, IL-6, IL-17A, TNF-α, IFN-γ, MCP-1 and GM-CSF contents were significantly higher than the sham control group(P<0. 01). In the sample groups, except for the high dose group of MCP-1 and TNF-α, which was significantly higher than the sham operation group(P<0. 01 and P<0. 05, respectively). The contents of IL-6, IL-10, IL-17A, IL-23, TNF-α, IFN-γ, IFN-β, MCP-1, GM-CSF were not changed significantly(P>0. 05). Conclusion: The dental restoration membrane of xenogeneic acellular dermal matrix have no significant effect on cytokines, as show at the levels of cytokines measured using CBA method.

参考文献

[1] 王璐, 许凤. 口腔修复膜材料在牙种植中引导骨再生的效应分析[J]. 中国医疗器械信息, 2018, 24(3): 146
WANG L, XU F. Effect of dental repair membrane materials on guided bone regeneration in dental implants[J]. China Med Device Inf, 2018, 24(3): 146
[2] 常云柱. 牙种植中引导骨再生使用口腔修复膜材料的效果观察[J]. 全科口腔医学电子杂志, 2018(5): 13
CHANG YZ. Observation on the effect of using oral restorative membrane materials to guide bone regeneration in dental implants[J]. General J Stomatol, 2018(5): 13
[3] 欧阳冰. 两种口腔修复膜引导牙种植患者骨再生的临床效果[J]. 中国民康医学, 2018, 30(1): 103
OU-YANG B. Clinical effect of two kinds of oral restoration membranes in guiding bone regeneration in dental implant patients[J]. Med J Chin People Health, 2018, 30(1): 103
[4] 薛媛, 但年华, 但卫华, 等. 口腔修复膜的研究进展及其应用[J]. 生物医学工程与临床, 2016, 20(1): 101
XUE Y, DAN NH, DAN WH, et al. Progress and application of dental restoration membrane[J]. BME Clin Med, 2016, 20(1): 101
[5] 周静, 邓蔡, 张进锋. 引导种植牙区骨再生的异种脱细胞真皮基质[J]. 中国组织工程研究, 2013, 17(25): 4715
ZHOU J, DENG C, ZHANG JF. Acellular dermal matrix used for guiding bone regeneration in the dental implant area[J]. Chin J Tissue Eng Res, 2013, 17(25): 4715
[6] RICARDO L, JENNA LD, ERIC HJ, et al. The effect of cell debris within biologic scaffolds upon the macrophage response[J]. J Biomed Mater Res A, 2017, 105(8): 2109
[7] UNAI M, RAQUEL RH, SUGOI RC, et al. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds[J]. Int J Mol Sci, 2020, 30, 21(15): 5447
[8] TIMOTHY JK, ILEA TS, STEPHEN FB. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance[J]. Methods, 2015, 84: 25
[9] 陈亮, 邵安良, 魏利娜, 等. 应用Gal 抗原缺失小鼠评价可降解异种脱细胞真皮基质的免疫原性[J]. 药物分析杂志, 2019, 39(8): 1370
CHEN L, SHAO AL, WEI LN, et al. Evaluation of immunogenicity of biodegradable acellular dermis matrix in Gal antigen-deficient mice[J]. Chin J Pharm Anal, 2019, 39(8): 1370
[10] GB/T 16886. 20-2015 医疗器械生物学评价第20 部分: 医疗器械免疫毒理学试验原则和方法B/T 16886. 20-2015 医疗器械生物学评价第20 部分: 医疗器械免疫毒理学试验原则和方法[S]. 2015
GB/T 16886. 20-2015 Biological evaluation of Medical Devices–Part 20: Principles and Methods for Immunotoxicology Testing of Medical DevicesB/T 16886. 20-2015 Biological evaluation of Medical Devices–Part 20: Principles and Methods for Immunotoxicology Testing of Medical Devices[S]. 2015
[11] 郑锦标, 梁杰, 张培华. 脱细胞真皮基质的制备、作用机理、免疫原性及其在整形外科中的应用现状[J]. 广东医学院学报, 2008, 26(2): 208
ZHENG JB, LIANG J, ZHANG PH. Preparation, mechanism of action, immunogenicity, and application status of acellular dermal matrix in plastic surgery[J]. J Guangdong Med Coll, 2008, 26(2): 208
[12] 丁桂凤. Roitt 免疫学基础[M]. 北京: 高等教育出版社, 2005: 167
DING GF. Roitt’s Essential Immunology[M]. Beijing: Higher Education Press, 2005: 167
[13] 陈曦, 朱波, 陈正堂. IL-17/IL-17R 与恶性肿瘤[J]. 免疫学杂志, 2010, 26(4): 366
CHEN X, ZHU B, CHEN ZT. IL-17/IL-17R and cancer[J]. Immul J, 2010, 26(4): 366
[14] ANNA B, EMANUELE S, NICOLA B, et al. Biologics that inhibit the Th17 pathway and related cytokines to treat inflammatory disorders[J]. Expert Opin Biol Ther, 2017 , 17(11): 1363
[15] 田红岭, 侯玉柱, 王若雨, 等. IL-23 生理病理学意义及信号通路[J]. 免疫学杂志, 2014, 30(6): 555
TIAN HL, HOU YZ, WANG RY, et al. Physiological and pathological significance of IL-23 and its signaling pathways[J]. Immul J, 2014, 30(6): 555
[16] 曹雪涛, 叶天星, 杜平. 细胞因子和细胞因子网络的基础研究进展[J]. 国外医学(免疫学分册), 1990, 5: 230
CAO XT, YE TX, DU P. Basic research progress of cytokines and cytokine networks[J]. Foreign Med(Sect Immunol), 1990, 5: 230
[17] 杜娟, 程功, 吴煦. 流式液相蛋白定量技术在药物毒理学中的应用[C]. 2017[2020-2-13]//cpfd.cnki.com.cn/Article/CPFDTOTAL-2GDV201707001064.htm
DU J, CHENG G, WU X. Application of Flow Cytometry Protein Quantitative Technology in Drug Toxicology[C].//cpfd.cnki.com.cn/Article/CPFDTOTAL-2GDV201707001064.htm
[18] EDWARD M, RUDI V, HOMERO S. Cytometric bead array: a multiplexed assay platform with applications in various areas of biology[J]. Clin Immunol, 2004 Mar, 110(3): 252
[19] LUIS C, DONNA MM. Cytokine measurement using cytometric bead arrays[J]. Methods Mol Biol, 2012, 845: 425
[20] 杜晓丹, 方玉, 奚廷斐, 等. BSA 作为动物源性医疗器械细胞免疫检测阳性对照物的研究[J]. 药物分析杂志, 2010, 30(7): 184
DU XD, FANG Y, XI TF, et al. Study on BSA as a positive control for cellular immunity evaluation of animal-derived medical devices[J]. Chin J Pharm Anal, 2010, 30(7): 184
[21] 陈婧, 冯喜英, 关巍, 等. 单核细胞趋化蛋白-1 与肺部疾病关系的研究进展[J]. 中华肺部疾病杂志, 2017, 10(5): 601
CHEN J, FENG XY, GUAN W, et al. Research progress on the relationship between monocyte chemoattractant protein-1 and lung diseases[J]. Chin J Lung Dis, 2017, 10(5): 601
[22] HAMMAN O, MAHMOUD O, ZAHRAN M., et al. A possible role for tnf-α in coordinating inflammation and angiogenesis in chronic liver disease and Hepatocellular Carcinoma[J]. Gastrointest Cancer Res, 2013, 6(4): 107
文章导航

/