综述专论

环状RNA检测方法研究进展*

展开
  • 1.江汉大学医学院,武汉 430026;
    2.武汉大学中南医院,武汉 430071
第一作者 Tel:(027)84225149;E-mail: 563132816@qq.com
** 刘巍 Tel:(027)67813548;E-mail:13006132756@163.com
刘亮 Tel:(027)67812902;E-mail:liuliang1@whu.edu.cn

收稿日期: 2023-04-25

  网络出版日期: 2024-06-21

基金资助

* 国家自然科学基金(No. 82002252);中华国际医学交流基金会

Research progress of circRNA detection methods*

Expand
  • 1. School of Medicine, Jianghan University, Wuhan 430026, China;
    2. Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Received date: 2023-04-25

  Online published: 2024-06-21

摘要

环状RNA(circRNA)是一大类内源性单链RNA,不同于其他线性RNA,circRNA通过外显子、内含子或2个外显子-内含子的反向剪接和融合形成共价闭环而产生,在高度分化的真核生物中普遍表达,并且与生物体的多种发育和代谢疾病过程密切相关。circRNA具有结构稳定、抗RNA酶降解、高度保守以及组织特异性表达等特点,是诊断和预后的理想生物标记物。传统方法如Northern 印迹法、qRT-PCR和微阵列分析虽然提供了一定有用的信息,但是依旧受制于各自的缺点,无法在临床检验中大规模推广。近年来,为了解决这些问题,出现了一些新的检测方法。本文总结了目前circRNA检测方法的相关进展,阐述其优点和局限性,并讨论面临的挑战以及未来的发展方向。

本文引用格式

陈中强, 袁发浒, 李莹, 施璐, 曹晓琴, 刘巍, 刘亮 . 环状RNA检测方法研究进展*[J]. 药物分析杂志, 2024 , 44(2) : 185 -194 . DOI: 10.16155/j.0254-1793.2024.02.01

Abstract

CircRNAs are a large class of endogenous single-stranded RNAs that are different from other linear RNAs, which are produced by back-splicing and fusion of either exons, introns, or both exon-intron into covalently closed loops. They are widely expressed in highly differentiated eukaryotes, and are closely related to various development and metabolic disease processes of organisms. They are characterized by stable structure, resistant to RNA degradation, conservation, and tissue-specific expression, making them ideal biomarkers for diagnosis and prognosis. Traditional methods such as Northern blotting, qRT-PCR and microarray analysis provide useful information, however, they are subject to their own shortcomings. Traditional methods are restricted in large-scale promotion in clinical trials. In recent years, in order to solve these problems, some new detection methods have emerged. In this article, we reviewed the relevant progress of all current circRNA detection methods, expounded their advantages and limitations, and discussed the challenges and future development directions.

参考文献

[1] KULCHESKI FR, CHRISTOFF AP, MARGIS R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker[J]. Biotechnol, 2016, 238: 42
[2] KRISTENSEN LS, ANDERSEN MS, STAGSTED L, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675
[3] LIANG Y, LIU N, YANG L, et al. A brief review of circRNA biogenesis, detection and function[J]. Curr Genomics, 2021, 22(7): 1
[4] BARRETT SP, SALZMAN J. Circular RNAs: analysis, expression and potential functions[J]. Development, 2016, 143(11): 1838
[5] ABU N, JAMAL R. Circular RNAs as promising biomarkers: a mini-review[J]. Front Physiol, 2016(7): 355
[6] CHAICHIAN S, SHAFABAKHSH R, MIRHASHEMI SM, et al. Circular RNAs: a novel biomarker for cervical cancer[J]. Cell Physio, 2020, 235(2): 718
[7] ZHANG HD, JIANG LH, SUN DW, et al. CircRNA: a novel type of biomarker for cancer[J]. Breast Cancer, 2018, 25(1): 1
[8] LIU L, ZANG M, CHEN ZQ, et al. Circular RNA detection methods: a minireview[J]. Talanta, 2022, 238(Pt 2): 123066
[9] ZHANG Z, YANG T, XIAO J. Circular RNAs: promising biomarkers for human diseases[J]. EBioMedicine, 2018, 34: 267
[10] TABAK H, SMIT J, WINTER A, et al. Discrimination between RNA circles, interlocked RNA circles and lariats using two-dimensional polyacrylamide gel electrophoresis[J]. Nucleic Acids Res, 1988, 16(14A): 6597
[11] JECK WR, SHARPLESS NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5): 453
[12] KHANDJIAN EW, MÉRIC C. A procedure for Northern blot analysis of native RNA[J]. Anal Biochem,1986, 159(1): 227
[13] COCQUET J, CHONG A, ZHANG G, et al. Reverse transcriptase template switching and false alternative transcripts[J]. Genomics, 2006, 88(1): 127
[14] YU CY, LIU HJ, HUNG LY, et al. Is an observed non-co-linear RNA product spliced in trans, in cis or just in vitro[J]. Nucleic acids Res, 2014, 42(14): 9410
[15] BARRETT SP, WANG PL, SALZMAN J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor[J]. Elife, 2015, 4: e07540
[16] COOPER DA, CORTÉS-LÓPEZ M, MIURA P. Genome-wide circRNA profiling from RNA-seq data[J]. Methods Mol Biol, 2018, 1724: 27
[17] LI Y, ZHAO J, YU S, et al. Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis[J]. Clin Chem, 2019, 65(6): 798
[18] LI S, TENG S, XU J, et al. Microarray is an efficient tool for circRNA profiling[J]. Brief Bioinform, 2019, 20(4): 1420
[19] XI Y, FOWDUR M, LIU Y, et al. Differential expression and bioinformatics analysis of circRNA in osteosarcoma[J]. Biosci Rep, 2019, 39(5): BSR20181514
[20] MAO J, LI T, FAN D, et al. Abnormal expression of rno_circRNA_014900 and rno_circRNA_005442 induced by ketamine in the rat hippocampus[J]. BMC Psychiatry, 2020, 20(1): 1
[21] WANG M, SU P, LIU Y, et al. Abnormal expression of circRNA_089763 in the plasma exosomes of patients with postoperative cognitive dysfunction after coronary artery bypass grafting[J]. Mol Med Rep, 2019, 20(3): 2549
[22] SALZMAN J. Circular RNA expression: its potential regulation and function[J]. Trends Genet, 2016, 32(5): 309
[23] SCHNEIDER T, SCHREINER S, PREUER C, et al. Northern blot analysis of circular RNAs[J]. Methods Mol Biol, 2018, 1724: 119
[24] BURNETT WV. Northern blotting of RNA denatured in glyoxal without buffer recirculation[J]. Biotechniques, 1997, 22(4): 668
[25] D'AMBRA E, MORLANDO M. Study of circular RNA expression by nonradioactive northern blot procedure[J]. Methods Mol Biol, 2021, 2348: 371
[26] WANG X, GE S. Nonradioactive northern blot of circRNAs[J]. Methods Mol Biol, 2018, 1724: 135
[27] VáRALLYAY É, BURGYÁN J, HAVELDA Z. MicroRNA detection by northern blotting using locked nucleic acid probes[J]. Nat Protoc, 2008, 3(2): 190
[28] DAMM K, BACH S, MÜLLER K HARTMANN, et al. Improved northern blot detection of small RNAs using EDC crosslinking and DNA/LNA probes[J]. Methods Mol Biol, 2015, 1296: 41
[29] PANDA AC, GOROSPE M. Detection and analysis of circular RNAs by RT-PCR[J]. Bio Protoc, 2018, 8(6): e2775
[30] JINEK M, DOUDNA JA. A three-dimensional view of the molecular machinery of RNA interference[J]. Nature, 2009, 457(7228): 405
[31] SUZUKI H, TSUKAHARA T. A view of pre-mRNA splicing from RNase R resistant RNAs[J]. Int J Mol Sci, 2014, 15(6): 9331
[32] CHEN DF, ZHANG LJ, TAN K, JING Q. Application of droplet digital PCR in quantitative detection of the cell-free circulating circRNAs[J]. Biotechnol Biotec, 2018, 32(1): 116
[33] SEDLAK RH, KUYPERS J, JEROME KR. A multiplexed droplet digital PCR assay performs better than qPCR on inhibition prone samples[J]. Diagn Microbiol Infect Dis, 2014, 80(4): 285
[34] UCHIYAMA Y, NAKASHIMA M, WATANABE S, et al. Ultra-sensitive droplet digital PCR for detecting a low-prevalence somatic GNAQ mutation in Sturge-Weber syndrome[J]. Sci Rep, 2017, 7: 39897
[35] LI T, SHAO Y, FU L, et al. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection[J]. J Mol Med (Berl), 2018, 96(1): 85
[36] LI H, BAI R, ZHAO Z, et al. Application of droplet digital PCR to detect the pathogens of infectious diseases[J]. Bioscience Reports, 2018, 38(6): BSR20181170
[37] ZHANG P, GUO N, GAO K, et al. Direct recognition and sensitive detection of circular RNA with ligation-based PCR[J]. Org Biomol Chem, 2020, 18(17): 3269
[38] LOHMAN G, ZHANG Y, ZHELKOVSKY AM, et al. Efficient DNA ligation in DNA-RNA hybrid helices by chlorella virus DNA ligase[J]. Nucleic Acids Res, 2014, 42(3): 1831
[39] WANG H, WANG H, LIU C, et al. Ultrasensitive detection of telomerase activity in a single cell using stem-loop primer-mediated exponential amplification (SPEA) with near zero nonspecific signal[J]. Chem Sci, 2016, 7(8): 4945
[40] TANG W, FU K, SUN H, et al. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer[J]. Mol Cancer, 2018, 17(1): 1
[41] WANG Z, XU P, CHEN B, et al. Identifying circRNA-associated-ceRNA networks in the hippocampus of Aβ1-42-induced Alzheimer's disease-like rats using microarray analysis[J]. Aging, 2018, 10(4): 775
[42] ZHOU YF, SHI LJ, YAO J, et al. Microarray analysis of circRNA expression pattern in corneal neovascularization[J]. Cornea, 2019, 38(11): 1443
[43] LIU W, ZHANG J, ZOU C, et al. Microarray expression profile and functional analysis of circular RNAs in osteosarcoma[J]. Cell Physiol Biochem, 2017, 43(3): 969
[44] WU Q, WANG Y, CAO M, et al. Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm[J]. Proc Natl Acad Sci USA, 2012, 109(10): 3938
[45] XIN R, GAO Y, Y. GAO Y, et al. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes[J]. Nat Commun, 2021, 12(1): 1
[46] WESTHOLM JO, MIURA P, OLSON S, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation[J]. Cell Rep, 2014, 9(5): 1966
[47] DANAN M, SCHWARTZ S, EDELHEIT S, et al. Transcriptome-wide discovery of circular RNAs in archaea[J]. Nucleic Acids Res, 2012, 40(7): 3131
[48] SALZMAN J, GAWAD C, WANG PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012, 7(2): e30733
[49] YANG X, YE T, LIU H, et al. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer[J]. Mol Cancer, 2021, 20(1): 1
[50] FONSECA, NUNO A, RUNG, et al. Tools for mapping high-throughput sequencing data[J]. Bioinformatics, 2012, 28(24): 3169
[51] CHEN L, YU Y, ZHANG X, et al. PcircRNA_finder: a software for circRNA prediction in plants[J]. Bioinformatics, 2016, 32(22): 3528
[52] NIU M, ZHANG J, LI Y, et al. CirRNAPL: a web server for the identification of circRNA based on extreme learning machine[J]. Comput Struct Biotec, 2020, 18: 834
[53] ZHANG X, WANG H, ZHANG Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1): 134
[54] GAO Y, WANG J, ZHAO F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification[J]. Genome Biol, 2015, 16(1): 4
[55] GAFFO E, BURATIN A, DAL MOLIN A, et al. Sensitive, reliable and robust circRNA detection from RNA-seq with CirComPara2[J]. Brief Bioinform, 2022, 23(1): bbab418
[56] ZHANG Y, ZHANG XO, CHEN T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51(6): 792
[57] LI Z, HUANG C, BAO C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3): 256
[58] CHRZANOWSKA NM, KOWALEWSKI J, LEWANDOWSKA MA. Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors[J]. Molecules, 2020, 25(8): 1864
[59] LIM AS, LIM TH. Fluorescence in situ hybridization on tissue sections[J]. Methods Mol Biol, 2017, 1541: 119
[60] MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333
[61] WADA Y, OHTA Y, XU M, et al. A wave of nascent transcription on activated human genes[J]. Proc Natl Acad Sci USA, 2009, 106(43): 18357
[62] GOO NI, KIM DE. Rolling circle amplification as isothermal gene amplification in molecular diagnostics[J]. Biochip J, 2016, 10(4): 262
[63] ALI MM, LI F, ZHANG Z, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine[J]. Chem Soc Rev, 2014, 43(10): 3324
[64] YAO C, ZHANG R, TANG J, et al. Rolling circle amplification (RCA)-based DNA hydrogel[J]. Nat Protoc, 2021, 16(12): 5460
[65] LIU Y, ZHANG X, LIU M, et al. Direct detection of circRNA in real samples using reverse transcription-rolling circle amplification[J]. Anal Chim Acta, 2020, 1101: 169
[66] WANG K, BAI X, XUE Y, et al. Absolute quantification of circRNA using digital reverse transcription-hyperbranched rolling circle amplification[J]. Sensor Actuat B Chem, 2023, 375: 132893
[67] JIAO J, XIANG Y, DUAN C, et al. Lighting up circRNA using a linear DNA nanostructure[J]. Anal Chem, 2020, 92(18): 12394
[68] DIRKS RM, PIERCE NA. Triggered amplification by hybridization chain reaction[J]. Proc Natl Acad Sci USA, 2004, 101(43): 15275
[69] DONG J, ZENG Z, SUN R, et al. Specific and sensitive detection of circRNA based on netlike hybridization chain reaction[J]. Biosens Bioelectron, 2021, 192: 113508
[70] QU H, CHEN M, GE J, et al. A fluorescence strategy for circRNA quantification in tumor cells based on T7 nuclease-assisted cycling enzymatic amplification[J]. Anal Chim Acta, 2022, 1189: 339210
[71] YANG M, LI H, LI X, et al. Catalytic hairpin self-assembly regulated chameleon silver nanoclusters for the ratiometric detection of circRNA[J]. Biosens Bioelectron, 2022, 209: 114258
[72] NOTOMI T, MORI Y, TOMITA N, et al. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects[J]. Microbiol, 2015, 53(1): 1
[73] NAGAMINE K, HASE T, NOTOMI T. Accelerated reaction by loop-mediated isothermal amplification using loop primers[J]. Mol Cell Probes, 2002, 16(3): 223
[74] TOMITA N, MORI Y, KANDA H, et al. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products[J]. Nat Protoc, 2008, 3(5): 877
[75] NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res, 2000, 28(12): e63
[76] WONG YP, OTHMAN S, LAU YL, et al. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms[J]. Appl Microbiol, 2018, 124(3): 626
[77] ZHANG P, GAO K, LIANG Y, et al. Ultrasensitive detection of circular RNA by accurate recognition of the specific junction site using stem-loop primer induced double exponential amplification[J]. Talanta, 2020, 217: 121021
[78] PAOLILLO C, LONDIN E, FORTINA P. Single-cell genomics[J]. Clin Chem, 2019, 65(8): 972
[79] LIM B, LIN Y, NAVIN N. Advancing cancer research and medicine with single-cell genomics[J]. Cancer Cell, 2020, 37(4): 456
[80] NISAR S, BHAT AA, SINGH M, et al. Insights into the role of circRNAs: biogenesis, characterization, functional, and clinical impact in human malignancies[J]. Front Cell Dev Biol, 2021, 9: 0617281
[81] JIAO J, GAO T, SHI H, et al. A method to directly assay circRNA in real samples[J]. Chem Commun (Camb), 2018, 54(95): 13451
[82] ANISIMOVA VE, REBRIKOV DV, SHAGIN DA, et al. Isolation, characterization and molecular cloning of duplex-specific nuclease from the hepatopancreas of the Kamchatka crab[J]. BMC Biochem, 2008, 9: 14
[83] HIRAKAWA Y, OHISO I. Cloning, expression, and characterization of thermostable duplex-specific nuclease from snow crab (Chionoecetes opilio)[C]//. The 32nd Annual Meeting of the Molecular Biology of Japan, 2009
[84] JIN J, CHAO L, NING L, et al. Electrochemical detection of circRNAs based on the combination of back-splice junction and duplex-specific nuclease[J]. Sensor Actuat B Chem, 2020, 302: 127166
[85] ZHANG Y, ZHANG Q, WENG X, et al. NEase-based amplification for detection of miRNA, multiple miRNAs and circRNA[J]. Anal Chim Acta, 2021, 1145: 52
[86] ZHAO G, YAN X, ZHANG Y, et al. Sensitive detection of miRNA and circRNA through DSN enzyme cooperating NEase assisted dual signal amplification[J]. Anal Biochem, 2022, 654: 114744
文章导航

/