质量分析

基于广泛靶向代谢组学研究甘草不同年限差异代谢物*

展开
  • 1.甘肃中医药大学药学院,兰州 730000;
    2.甘肃康乐药业有限责任公司,兰州 730300;
    3.甘肃中医药大学中医临床学院,兰州 730000;
    4.兰州食品药品检验检测研究院,兰州 730050;
    5.中国食品药品检定研究院,北京 102629
第一作者 Tel:09315162435;E-mail:gszyzdl2022@163.com
**杨扶德 Tel:(0931)5162435;E-mail:gszyyfd@163.com;程显隆 Tel:(010)53851483;E-mail:lncxl@sina.com

修回日期: 2023-12-11

  网络出版日期: 2024-06-21

基金资助

*2021年度甘肃高等学校产业支撑计划项目(2021CYZC-40);甘肃省科技小巨人企业培育计划项目(17CXIJA084);甘肃省委组织部人才发展专项资金项目(2018年);2018年兰州市人才创新创业科技计划项目(2017-RC-112)

Study on differential metabolites of Glycyrrhiza uralensis Fisch. in different years based on extensive targeted metabonomics*

Expand
  • 1. College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China;
    2. Gansu Kangle Pharmaceutical Co., Ltd., Lanzhou 730300, China;
    3. Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China;
    4. Lanzhou Institute of Food and Drug Control, Lanzhou 730050, China;
    5. National Institutes for Food and Drug Control, Beijing 102629, China

Revised date: 2023-12-11

  Online published: 2024-06-21

摘要

目的:通过对不同栽培年限甘草中的代谢成分进行定性定量分析,寻找其差异代谢物,探究甘草体内代谢物的累积规律。方法:采用Agilent SB-C18(100 mm×2.1 mm,1.8 μm)色谱柱,以0.1%甲酸水溶液为流动相A,0.1%甲酸乙腈溶液为流动相B,梯度洗脱,流速0.35 mL·min-1,柱温40 ℃,进样量4 μL;质谱采用正负离子扫描,多反应监测模式,进行样品质谱信号采集,基于自建二级质谱数据库对不同年限甘草体内的代谢物进行定性与定量分析,结合主成分分析、正交偏最小二乘法判别分析、聚类热图分析等手段对不同年限甘草的代谢物进行多元统计分析。结果:(1)从不同年限甘草样品共检测到1 038个代谢物,其中一年生与二年生甘草间存在201个差异代谢物,125个上调,76个下调;二年生与三年生之间存在223个差异代谢物,64个上调,159个下调;一年生与三年生之间存在185个差异代谢物,59个上调,126个下调;发现一年生甘草特有代谢物4个,二年生6个,三年生1个。(2)对差异代谢物进行K-均值聚类分析,按照积累趋势不同将差异代谢物进行分类,发现大多数黄酮、酚酸、萜、木脂素及香豆素等类代谢物在二年生甘草中达到峰值,大多数生物碱、氨基酸及其衍生物等类代谢物在一年生甘草中达到峰值,一部分黄酮、酚酸等类代谢物在三年生甘草中达到峰值,提示甘草体内代谢物含量变化存在一定的规律。(3)在京都基因与基因组百科全书(KEGG)数据库注释得到160个差异代谢物,黄酮类、氨基酸及其衍生物、有机酸是其中占比较多的差异代谢物。不同对比组间共富集到79条差异代谢通路,其中极显著富集的差异代谢通路(P<0.01)6条,显著富集的通路(P<0.05)23条,参与上述通路的化合物在不同年限对比中的分布与富集前基本一致。结论:本研究阐明了不同生长年限甘草代谢组分间的差异,并通过差异代谢物进一步分析了可能造成差异的代谢通路,为甘草采收年限的确定及品质形成机制的研究提供一定的参考依据。

本文引用格式

周德来, 王苗, 冯金梁, 赵鲲鹏, 李运, 程显隆, 杨扶德 . 基于广泛靶向代谢组学研究甘草不同年限差异代谢物*[J]. 药物分析杂志, 2024 , 44(1) : 144 -157 . DOI: 10.16155/j.0254-1793.2024.01.15

Abstract

Objective: To investigate the accumulation pattern of metabolites in Glycyrrhiza uralensis by qualitative and quantitative analyses of metabolic constituents in Glycyrrhiza uralensis with different cultivation years, and to search for its differential metabolites. Methods: The separation was performed on an Agilent SB-C18 (100 mm×2.1 mm, 1.8 μm) column with 0.1% formic acid aqueous solution as the mobile phase A and 0.1% formic acid acetonitrile solution as the mobile phase B. The gradient elution was carried out at a flow rate of 0.35 mL·min-1, and the column temperature was 40 ℃ with an injection volume of 4 μL. The mass spectrometry was performed with positive and negative ions scanning in multiple reaction monitoring mode. The mass spectrometry was performed in multi-response monitoring mode with positive and negative ion scanning. The qualitative and quantitative analyses of the metabolites in Glycyrrhiza uralensis were carried out on the basis of the self-constructed secondary mass spectrometry database, and the multivariate statistical analyses of the metabolites of Glycyrrhiza uralensis with different cultivation were combined with principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and cluster heat map analyses. Results: (1) A total of 1 038 metabolites were detected from the samples of Glycyrrhiza uralensis with different cultivation years, among which 201 differential metabolites existed between annual and biennial Glycyrrhiza uralensis, 125 up-regulated and 76 down-regulated; 223 differential metabolites existed between biennial and three years old Glycyrrhiza uralensis, 64 up-regulated and 159 down-regulated; 185 differential metabolites existed between annual and three years old Glycyrrhiza uralensis, 59 up-regulated and 126 down-regulated. Four metabolites specific to annual Glycyrrhiza uralensis, six to biennial and one to three-year old were found. (2) K-mean cluster analysis was performed on the differential metabolites, and the differential metabolites were classified according to the different accumulation trends, and it was found that most of the metabolites such as flavonoids, phenolic acids, terpenes, lignans, and coumarins peaked in biennial Glycyrrhiza uralensis, and most of the metabolites such as alkaloids, amino acids and their derivatives peaked in annual Glycyrrhiza uralensis, and a part of the flavonoids, phenolic acids and other metabolites reached peaks in three years old Glycyrrhiza uralensis, suggesting that the metabolism of Glycyrrhiza uralensis in the body reached the peaks. peak value, suggesting that there was a certain pattern of metabolite content changes in Glycyrrhiza uralensis. (3) 160 differential metabolites annotated in Kyoto Encyclopedia of Genes and Genomes (KEGG) datebase and flavonoids, amino acids and their derivatives, and organic acids were the differential metabolites that accounted for a relatively large number of them. A total of 79 differential metabolic pathways were enriched among different comparison groups, among which 6 differential metabolic pathways were highly significantly enriched (P<0.01) and 23 significantly enriched (P<0.05), and the distributions of compounds involved in the above pathways were basically the same as before enrichment in comparison of different cultivation year. Conclusion: The present study elucidate the differences between the metabolic components of Glycyrrhiza uralensis with different cultivation years, and further analyse the metabolic pathways that might cause the differences through the differential metabolites, which can provide a certain reference basis for the determination of the harvesting year of Glycyrrhiza uralensis and the study of the quality formation mechanism.

参考文献

[1] 刘尽美, 王清亮, 姚天文, 等. 甘草应用分布及用量规律研究[J]. 中华中医药学刊, 2014, 32(12): 3021
LIU JM, WANG QL, YAO TW, et al. Research on distribution and dosage of liquorice[J]. Chin Arch Tradit Chin Med, 2014, 32(12): 3021
[2] 万修福, 杨野, 康传志, 等. 林草中药材生态种植现状分析及展望[J]. 中国现代中药, 2021, 23(8): 1311
WAN XF, YANG Y, KANG CZ, et al. Current situation and future perspectives of ecological planting of Chinese medicinal plants in forests and grasslands[J]. Mod Chin Med, 2021, 23(8): 1311
[3] 边育红, 王丽, 张晓雨, 等. 甘草产业链的现状与技术提升[J]. 天津中医药大学学报, 2020, 39(1): 19
BIAN YH, WANG L, ZHANG XY, et al. Current situation and technology improvement of licorice industry chain[J]. J Tianjin Univ Tradit Chin Med, 2020, 39(1): 19
[4] 范铭, 曹爱农, 晋小军, 等. 陇中半干旱地区不同年限甘草生长与有效成分积累动态研究[J]. 西北农业学报, 2016, 25(10): 1522
FAN M, CAO AN, JIN XJ, et al. Growth and accumulation of active components of licorice in different growth years in seiarid region of middle of Gansu province[J]. Acta Agric Boreali-Occident Sin, 2016, 25(10): 1522
[5] 黄帅, 元林, 马淼. 不同种植年限的光果甘草对人乳腺癌细胞增殖抑制作用的研究[J]. 石河子大学学报(自然科学版), 2009, 27(5): 571
HUANG S, YUAN L, MA M. Comparative studies on the anti-proliferation effects of Glycyrrhiza glabra with different living span on human breast cancer BCAP cell[J]. J Shihezi Univ (Nat Sci), 2009, 27(5): 571
[6] 李娜, 张晨, 钟赣生, 等. 不同品种甘草化学成分、药理作用的研究进展及质量标志物(Q-Marker)预测分析[J]. 中草药, 2021, 52(24): 7680
LI N, ZHANG C, ZHONG GS, et al. Research progress on chemical constituents and pharmacological effects of different varieties of Glycyrrhizae Radix et Rhizoma and predictive analysis of quality markers[J]. Chin Tradit Herb Drugs, 2021, 52(24): 7680
[7] 陈佳, 杨蕊, 张权, 等. HPLC结合化学计量学方法用于不同生长年限甘草药材黄酮类成分特征图谱研究[J]. 中国药学杂志, 2020, 55(17): 1415
CHEN J, YANG R, ZHANG Q, et al. Specific chromatograms of Glycyrrhiza uralensis Fisch. flavonoids in different growth years by HPLC coupled with chemometric analysis[J]. Chin Pharm J, 2020, 55(17): 1415
[8] 薄颖异, 张鲁, 常冠华, 等. 不同生长期甘草地上部分黄酮类化合物的含量研究[J]. 西北药学杂志, 2020, 35(5): 639
BO YY, ZHANG L, CHANG GH, et al. Research on the content variation of flavonoids in the aerial parts of Glcyrrhiza uralensis during different growth periods[J]. Northwest Pharm J, 2020, 35(5): 639
[9] 刘贤青, 罗杰. 植物代谢组学技术研究进展[J]. 科技导报, 2015, 33(16): 33
LIU XQ, LUO J. Advances of technologies and research in plant metabolomics[J]. Sci Technol Rev, 2015, 33(16): 33
[10] 田淑云, 廖朝华, 周紫薇, 等. 植物代谢组学在药材质量评价中的研究进展与展望[J]. 药学学报, 2022, 57(6): 1734
TIAN SY, LIAO CH, ZHOU ZW, et al. Research progress and prospects for the use of plant metabolomics in quality evaluation of traditional Chinese medicinal materials[J]. Acta Pharm Sin, 2022, 57(6): 1734
[11] LIAO WC, LIN YH, CHANG TM, et al. Identification of two licorice species, Glycyrrhiza uralensis and Glycyrrhiza glabra, based on separation and identification of their bioactive components[J]. Food Chem, 2012, 132(4): 2188
[12] WANG CC, CAI ZC, SHI JJ, et al. Comparative metabolite profiling of wild and cultivated licorice based on ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry[J]. Chem Pharm Bull, 2019, 67(10): 1104
[13] 文旺, 李莉, 李德坤, 等. 基于液质联用技术和植物代谢组学的甘草炮制品化学成分差异性分析[J]. 中国实验方剂学杂志, 2020, 26(17): 104
WEN W, LI L, LI DK, et al. Analysis of chemical variability on different processed products of Glycyrrhiza uralensis dry roots and rhizomes based on UPLC-Q-TOF-MSE and plant metabolomics[J]. Chin J Exp Tradit Med Form, 2020, 26(17): 104
[14] 吴昊, 于小红, 马光朝, 等. 基于LC-MS的甘草炮制雷公藤降低肝毒性的代谢组学研究[J]. 中草药, 2020, 51(21): 5501
WU H, YU XH, MA GC, et al. Metabolomics study on reduction of hepatotoxic of Tripterygium wilfordii processed by liquorice based on LC-MS[J]. Chin Tradit Herb Drugs, 2020, 51(21): 5501
[15] CHEN W, GONG L, GUO Z, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics[J]. Mol Plant, 2013, 6(6): 1769
[16] 高渐飞, 周玮, 刘妮, 等. 基于代谢组学分析黑老虎植株不同部位黄酮类成分[J]. 广西植物, 2022, 42(7): 1193
GAO JF, ZHOU W, LIU N, et al. Analysis of flavonoids in different tissues of Kadsura coccinea plant by widely-targeted metabolomics[J]. Guihaia, 2022, 42(7): 1193
[17] FRAE CG, CLOWERS BH, MOORE RJ, et al. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics[J]. Anal Chem, 2010, 82(10): 4165
[18] SONG W, QIAO X, CHEN K, et al. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids[J]. Anal Chem, 2017, 89(5): 3146
[19] 李震宇, 段亚辉, 秦雪梅, 等. 中药质量差异性研究的思考[J]. 药学学报, 2017, 52(12): 1820
LI ZY, DUAN YH, QIN XM, et al. Study of difference in quality of traditional Chinese medicines[J]. Acta Pharm Sin, 2017, 52(12): 1820
[20] 中华人民共和国药典 2020年版. 一部[S]. 2020: 88
ChP 2020. VolⅠ[S]. 2020: 88
[21] 姚玲玲, 柯昌强, 刘佳, 等. 不同炮制程度中药饮片蜜炙甘草的次生代谢化学成分组学研究[J]. 药学学报, 2021, 56(5): 1444
YAO LL, KE CQ, LIU J, et al. Metabolomic investigation of secondary metabolites of prepared slices of Glycyrrhiza uralensis with different degrees of honey processing[J]. Acta Pharm Sin, 2021, 56(5): 1444
[22] 杨瑞, 李文东, 袁伯川, 等. 3种不同基原甘草中18α-甘草酸与18β-甘草酸的含量分析[J]. 药物分析杂志, 2016, 36(6): 1065
YANG R, LI WD, YUAN BC, et al. Simultaneous determination of 18α-glycyrrhizic acid and 18β-glycyrrhizic acid in three licorice samples from different origin by HPLC[J]. Chin J Pharm Anal, 2016, 36(6): 1065
[23] 杨瑞, 李文东, 马永生, 等. 不同基原甘草的分子鉴定及市售甘草药材的质量评价[J]. 药学学报, 2017, 52(2): 318
YANG R, LI WD, MA YS, et al. The molecular identification of licorice species and the quality evaluation of licorice slices[J]. Acta Pharm Sin, 2017, 52(2): 318
[24] 李泽宇, 郝二伟, 李卉, 等. 甘草配伍应用的药理作用及机制分析[J]. 中国实验方剂学杂志, 2022, 28(14): 270
LI ZY, HAO EW, LI H, et al. Pharmacological effect of Glycyrrizae Radix et Rhizoma compatibility and its mechanism[J]. Chin J Exp Tradit Med Form, 2022, 28(14): 270
[25] SEO JH, CHOI HW, OH HN, et al. Licochalcone D directly targets JAK2 to induced apoptosis in human oral squamous cell carcinoma[J]. J Cell Physiol, 2019, 234(2): 1780
[26] KIM SS, LIM J, BANG Y, et al. Licochalcone E activates Nrf2/antioxidant response element signaling pathway in both neuronal and microglial cells: therapeutic relevance to neurodegenerative disease[J]. J Nutr Biochem, 2012, 23(10): 1314
[27] LIN Y, KUANG Y, LI K, et al. Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata[J]. Bioorg Med Chem, 2017, 25(14): 3706
[28] MEDEIROS DL, LIMA ETG, SILVA JC, et al. Rhamnetin: a review of its pharmacology and toxicity[J]. J Pharm Pharmacol, 2022, 74(6): 793
[29] ZHENG YF, WEI JH, FANG SQ, et al. Hepatoprotective triterpene saponins from the roots of Glycyrrhiza inflata[J]. Molecules, 2015, 20(4): 6273
[30] MITREGA K, ZORNIAK M, VARGHESE B, et al. Beneficial effects of L-leucine and L-valine on arrhythmias, hemodynamics and myocardial morphology in rats[J]. Pharmacol Res, 2011, 64(3): 218
[31] 李宣, 何迎春, 周芳亮. 山楂酸药理作用及其机制的研究进展[J]. 中国现代医学杂志, 2021, 31(8): 49
LI X, HE YC, ZHOU FL. Research advance or pharmacological effects and mechanisms of maslinic acid[J]. China J Mod Med, 2021, 31(8): 49
[32] 庞溢媛, 薛立英, 郑艳红, 等. 基于UHPLC-MS/MS代谢组学技术的不同采收期黄芩质量比较研究[J]. 药学学报, 2017, 52(12): 1903
PANG YY, XUE LY, ZHENG YH, et al. Comparative study on quality of Scutellaria baicalensis Georgi in different harvest periods using UHPLC-MS/MS metabolomics technology[J]. Acta Pharm Sin, 2017, 52(12): 1903
[33] TANAKA Y, BRUGLIERA F, KALC G, et al. Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives[J]. Biosci Biotechnol Biochem, 2010, 74(9): 1760
[34] 陈亚超, 李楠楠, 刘子迪, 等. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘[J]. 中国生物工程杂志, 2021, 41(9): 37
CHEN YC, LI NN, LIU ZD, et al. Metagenomic mining of functional genes related to glyrrhizin synthesis from endophytes licorice[J]. China Biotechnol, 2021, 41(9): 37
[35] 刘春生, 刘颖. 药用植物功能基因的研究思路与展望—以甘草为例[J]. 中国实验方剂学杂志, 2015, 21(1): 1
LIU CS, LIU Y. Research ideas and propects of functional genes involved in medicinal plants, such as Glycyrrhizae Radix et Rhizoma[J]. Chin J Exp Tradit Med Form, 2015, 21(1): 1
[36] MOCHIDA K, SAKURAI T, SEKI H, et al. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume[J]. Plant J, 2017, 89(2): 181
[37] 刘颖,刘春生. 甘草 β-AS基因时空表达模式研究[J]. 中药材, 2012, 35(4): 528
LIU Y, LIU CS. Study on the spatial and temporal expression of β-AS gene of Glycyrriza uralensis[J]. J Chin Med Mater, 2012, 35(4): 528
[38] 梁浩, 孙海, 钱佳奇, 等. 药用植物代谢调控的组学研究进展[J]. 中药材, 2023(8): 2085
LIANG H, SUN H, QIAN JQ, et al. Progress in histological studies of metabolic regulation in medicinal plants[J]. J Chin Med Mater, 2023(8): 2085
文章导航

/