综述专论

代谢组学在阿尔茨海默症病理机制和中药疗效评价研究中的应用进展*

展开
  • 1.海军军医大学药学院, 上海200433;
    2.福建中医药大学药学院, 福州350122;
    3.海军军医大学长海医院药学部, 上海200433
第一作者 Tel:18817518869; E-mail:wanghuiuuh@163.com
**Tel:13817272153; E-mail:hongzhy001@163.com

收稿日期: 2021-06-04

  网络出版日期: 2024-06-21

基金资助

*国家自然科学基金资助项目(81872829,81673386)

Application progress of metabolomics in pathological mechanism of Alzheimer’s disease and evaluation of efficacy of traditional Chinese medicine*

Expand
  • 1. School of Pharmacy, Naval Medical University, Shanghai 200433, China;
    2. School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
    3. Department of Pharmacy, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China

Received date: 2021-06-04

  Online published: 2024-06-21

摘要

阿尔茨海默病(Alzheimer’s disease,AD)是1种复杂的神经退行性疾病,研究表明其代谢改变与早期疾病机制有关。为扩大生物系统中代谢物检测的范围,基于多种分析平台联用的代谢组学策略,开发精确有效、侵入性小的生物标志物是AD代谢组学的研究热点,而空间代谢组学为生物组织代谢和药物代谢提供了全新视角。越来越多的中药单体、单味药材及中药复方被证明对AD具有一定的药效作用,从代谢组学角度探讨药效机制,可以提供潜在的生物标志物和代谢模式,有助于定量评价药物疗效及探索作用机制。本文综述了近5年代谢组学在AD病理机制和中药疗效评价研究中的应用进展。

本文引用格式

王辉, 戴建英, 何晓莉, 刘敏, 洪战英 . 代谢组学在阿尔茨海默症病理机制和中药疗效评价研究中的应用进展*[J]. 药物分析杂志, 2022 , 42(1) : 94 -107 . DOI: 10.16155/j.0254-1793.2022.01.11

Abstract

Alzheimer’s disease (AD) is a complex neurodegenerative disease. Studies have shown that the metabolic changes of AD are associated to the early pathogenesis. To expand the scope of metabolite detection in biological system, the development of accurate, effective and less invasive biomarkers based on the combined metabolomics strategy of multiple analysis platforms are the research hotspot of AD metabolomics, and spatial metabolomics have provided new perspectives on biological tissue metabolism and drug metabolism. More and more traditional Chinese medicine monomers, single herbs and traditional Chinese medicine compounds were proved to have certain pharmacodynamic effects on AD. To explore the pharmacodynamic mechanism from the perspective of metabolomics could provide potential biomarkers and metabolic models, and help to quantitatively evaluate the efficacy of drugs and explore the mechanism of action. The application progresses on the metabolomics of pathological mechanism of AD and efficacy evaluation of traditional Chinese medicine in recent five years is reviewed.

参考文献

[1] PARASKEVAIDI M, ALLSOP D, KARIM S, et al. Diagnostic biomarkers for Alzheimer’s disease using non-invasive specimens[J].J Clin Med, 2020, 9(6): 1693
[2] ASDI. World Alzheimer Report 2019: Attitudes to Dementia[R/OL].London: Alzheimer’s Disease International, 2019 [2020-12-01].https://www.alzint.org/resource/world-alzheimer-report-2019/
[3] POLIS B, SAMSON AO. Role of the metabolism of branched-chain amino acids in the development of Alzheimer’s disease and other metabolic disorders[J].Neural Regen Res, 2020, 15(8): 1460
[4] CANTER RG, PENNEY J, TSAI LH. The road to restoring neural circuits for the treatment of Alzheimer’s disease[J].Nature, 2016, 539(7628): 187
[5] BADHWAR A, MCFALL GP, SAPKOTA S, et al. A multiomics approach to heterogeneity in Alzheimer’s disease: focused review and roadmap[J].Brain, 2020, 143(5): 1315
[6] NAZ S, VALLEJO M, GARCIA A, et al. Method validation strategies involved in non-targeted metabolomics[J].J Chromatogr A, 2014, 1353: 99
[7] ENCHE ADY CNA, LIM SM, TEH LK, et al. Metabolomic-guided discovery of Alzheimer’s disease biomarkers from body fluid[J].J Neurosci Res, 2017, 95(10): 2005
[8] LI Y, RUAN Q, LI Y, et al. A novel approach to transforming a non-targeted metabolic profiling method to a pseudo-targeted method using the retention time locking gas chromatography/mass spectrometry-selected ions monitoring[J].J Chromatogr A, 2012, 1255: 228
[9] ZHENG F, ZHAO X, ZENG Z, et al. Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography-mass spectrometry[J].Nat Protoc, 2020, 15(8): 2519
[10] CHARIDEMOU E, ASHMORE T, GRIFFIN JL, et al. The use of stable isotopes in the study of human pathophysiology[J].Int J Biochem Cell Biol, 2017, 93: 102
[11] MARKLEY JL, BR#xDC;SCHWEILER R, EDISON AS, et al. The future of NMR-based metabolomics[J].Curr Opin Biotechnol, 2017, 43: 34
[12] GRAHAM SF, HOLSCHER C, GREEN BD. Metabolic signatures of human Alzheimer’s disease (AD): 1H NMR analysis of the polar metabolome of post-mortem brain tissue[J].Metabolomics, 2014, 10(4): 744
[13] WU J, FU B, LEI H, et al. Gender differences of peripheral plasma and liver metabolic profiling in APP/PS1 transgenic AD mice[J].Neuroscience, 2016, 332: 160
[14] GONZALEZ-DOMINGUEZ R, SAYAGO A, FERNANDEZ-RECAMALES A. Metabolomics in Alzheimer’s disease: the need of complementary analytical platforms for the identification of biomarkers to unravel the underlying pathology[J].J Chromatogr B, 2017, 1071: 75
[15] GONZALEZ-DOMINGUEZ R, GARCIA-BARRERA T, GOMEZ-ARIZA JL. Metabolite profiling for the identification of altered metabolic pathways in Alzheimer’s disease[J].J Pharm Biomed Anal, 2015, 107: 75
[16] KIMBALL BA, WILSON DA, WESSON DW. Alterations of the volatile metabolome in mouse models of Alzheimer’s disease[J].Sci Rep, 2016, 6: 19495
[17] WISHART DS, FEUNANG YD, MARCU A, et al. HMDB 4.0: the human metabolome database for 2018[J].Nucleic Acids Res, 2018, 46(D1): D608
[18] GOMEZ-ARIZA J, BARBAS C, GARCIA-BARRERA T, et al. Metabolomic-driven elucidation of serum disturbances associated with Alzheimer’s disease and mild cognitive impairment[J].Curr Alzheimer Res, 2016, 13(6): 41
[19] TANG Z, LIU L, LI Y, et al. Urinary metabolomics reveals alterations of aromatic amino acid metabolism of Alzheimer’s disease in the transgenic CRND8 mice[J].Curr Alzheimer Res, 2016, 13(7): 764
[20] HE J, SUN C, LI T, et al. A sensitive and wide coverage ambient mass spectrometry imaging method for functional metabolites based molecular histology[J].Adv Sci(Weinh), 2018, 5(11): 1800250
[21] GONZALEZ DSRE, MANUEL I, GIRALT MT, et al. Imaging mass spectrometry(IMS) of cortical lipids from preclinical to severe stages of Alzheimer’s disease[J].Biochim Biophys Acta Biomembr, 2017, 1859: 1604
[22] ESTEVE C, JONES EA, KELL DB, et al. Mass spectrometry imaging shows major derangements in neurogranin and in purine metabolism in the triple-knockout 3×Tg Alzheimer mouse model[J].Biochim Biophys Acta, 2017, 1865(7): 747
[23] HUYNH RA, MOHAN C. Alzheimer’s disease: biomarkers in the genome, blood, and cerebrospinal fluid[J].Front Neurol, 2017, 8: 102
[24] MUGURUMA Y, TSUTSUI H, NODA T, et al. Widely targeted metabolomics of Alzheimer’s disease postmortem cerebrospinal fluid based on 9-fluorenylmethyl chloroformate derivatized ultra-high performance liquid chromatography tandem mass spectrometry[J].J Chromatogr B, 2018, 1091: 53
[25] TAKAYAMA T, MIZUNO H, TOYO’OKA T, et al. Isotope corrected chiral and achiral nontargeted metabolomics: an approach for high accuracy and precision metabolomics based on derivatization and its application to cerebrospinal fluid of patients with Alzheimer’s disease[J].Anal Chem, 2019, 91(7): 4396
[26] KOAL T, KLAVINS K, SEPPI D, et al. Sphingomyelin SM(d 18∶1/18∶0) is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological amyloid-beta 42, tau, and phospho-tau-181 levels[J].J Alzheimers Dis, 2015, 44(4): 1193
[27] VELPEN V, TEAV T, GALLART-AYALA H, et al. Systemic and central nervous system metabolic alterations in Alzheimer’s disease[J].Alzheimers Res Ther, 2019, 11(1): 93
[28] TRUSHINA E, DUTTA T, PERSSON X, et al. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics[J].PLoS One, 2013, 8(5): e63644
[29] YILMAZ A, UGUR Z, BISGIN H, et al. Targeted metabolic profiling of urine highlights a potential biomarker panel for the diagnosis of Alzheimer’s disease and mild cognitive impairment: a pilot study[J].Metabolites, 2020, 10: 357
[30] YU J, KONG L, ZHANG A, et al. High-throughput metabolomics for discovering potential metabolite biomarkers and metabolic mechanism from the APPswe/PS1dE9 transgenic model of Alzheimer’s disease[J].J Proteome Res, 2017, 16(9): 3219
[31] YUAN BF, ZHU QF, GUO N, et al. Comprehensive profiling of fecal metabolome of mice by integrated chemical isotope labeling-mass spectrometry analysis[J].Anal Chem, 2018, 90(5): 3512
[32] LUAN H, WANG X, CAI Z. Mass spectrometry-based metabolomics: targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders[J].Mass Spectrom Rev, 2019, 38(1): 22
[33] HUO Z, YU L, YANG J, et al. Brain and blood metabolome for Alzheimer’s dementia: findings from a targeted metabolomics analysis[J].Neurobiol Aging, 2020, 86: 123
[34] VARMA VR, OOMMEN AM, VARMA S, et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study[J].PLoS Med, 2018, 15(1): e1002482
[35] MAHAJAN UV, VARMA VR, GRISWOLD ME, et al. Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: a targeted metabolomic and transcriptomic study[J].PLoS Med, 2020, 17(1): e1003012
[36] DOMINY SS, LYNCH C, ERMINI F, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors[J].Sci Adv, 2019, 5(1): eaau 3333
[37] TAO H, TRAN T, ZHENG J, et al. Metabolomics analyses of saliva detect novel biomarkers of Alzheimer’s disease[J].J Alzheimers Dis, 2018, 65(4): 1
[38] LAU HC, YU JB, LEE HW, et al. Investigation of exhaled breath samples from patients with Alzheimer’s disease using gas chromatography-mass spectrometry and an exhaled breath sensor system[J].Sensors(Basel), 2017, 17(8): 1783
[39] TIELE A, WICAKSONO A, DAULTON E, et al. Breath-based non-invasive diagnosis of Alzheimer’s disease: a pilot study[J].J Breath Res, 2020, 14(2): 026003
[40] WANG M, CHEN L, LIU D, et al. Metabolomics highlights pharmacological bioactivity and biochemical mechanism of traditional Chinese medicine[J].Chem Biol Interact, 2017, 273: 133
[41] XIA H, WU L, CHU M, et al. Effects of breviscapine on amyloid beta 1-42 induced Alzheimer’s disease mice: a HPLC-QTOF-MS based plasma metabonomics study[J].J Chromatogr B, 2017, 1057: 92
[42] WEI M, LIU Z, LIU Y, et al. Urinary and plasmatic metabolomics strategy to explore the holistic mechanism of lignans in S. chinensis in treating Alzheimer’s disease using UPLC-Q-TOF-MS[J].Food Funct, 2019, 10(9): 5656
[43] LIU Y, LIU Z, WEI M, et al. Pharmacodynamic and urinary metabolomics studies on the mechanism of Schisandra polysaccharide in the treatment of Alzheimer’s disease[J].Food Funct, 2019, 10(1): 432
[44] LI J, LIU Y, LI W, et al. Metabolic profiling of the effects of ginsenoside Re in an Alzheimer’s disease mouse model[J].Behav Brain Res, 2018, 337: 160
[45] ZHANG Y, YANG X, WANG S, et al. Ginsenoside Rg3 prevents cognitive impairment by improving mitochondrial dysfunction in the rat model of Alzheimer’s disease[J].J Agric Food Chem, 2019, 67(36): 10048
[46] GONG Y, LIU Y, ZHOU L, et al. A UHPLC-TOF/MS method based metabonomic study of total ginsenosides effects on Alzheimer disease mouse model[J].J Pharm Biomed Anal, 2015, 115: 174
[47] LI N, ZHOU L, LI W, et al. Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer’s disease mouse model: a metabolomics study[J].J Chromatogr B, 2015, 985: 54
[48] LI N, LIU Y, LI W, et al. A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer’s disease[J].J Ginseng Res, 2016, 40(1): 9
[49] ZHOU H, TAI J, XU H, et al. Xanthoceraside could ameliorate Alzheimer’s disease symptoms of rats by affecting the gut microbiota composition and modulating the endogenous metabolite levels[J].Front Pharmacol, 2019, 10: 1035
[50] ZHANG M, LIU Y, LIU M, et al. UHPLC-QTOF/MS-based metabolomics investigation for the protective mechanism of Danshen in Alzheimer’s disease cell model induced by Aβ1-42[J].Metabolomics, 2019, 15(2): 13
[51] LI H, LEI T, ZHANG J, et al. Longan (Dimocarpus longan Lour.) Aril ameliorates cognitive impairment in AD mice induced by combination of D-gal/AlCl3 and an irregular diet via RAS/MEK/ERK signaling pathway[J].J Ethnopharmacol, 2021, 267: 113612
[52] ZHANG X, JIANG X, WANG X, et al. A metabolomic study based on accurate mass and isotopic fine structures by dual mode combined-FT-ICR-MS to explore the effects of Rhodiola crenulata extract on Alzheimer disease in rats[J].J Pharm Biomed Anal, 2019, 166: 347
[53] LI X, WANG Y, SU M, et al. Brain metabolomics study for the protective effects of Rhodiola crenulata extract on Alzheimer’s disease by HPLC coupled with Fourier transform-ion cyclotron resonance mass spectrometry[J].J Sep Sci, 2020, 43(16): 3216
[54] OSKOUIE AA, YEKTA RF, TAVIRANI MR, et al. Lavandula angustifolia effects on rat models of Alzheimer’s disease through the investigation of serum metabolic features using NMR metabolomics[J].Avicenna J Med Biotechnol, 2018, 10(2): 83
[55] YANG BY, TAN JY, LIU Y, et al. A UPLC-TOF/MS-based metabolomics study of rattan stems of Schisandra chinensis effects on Alzheimer’s disease rats model[J].Biomed Chromatogr, 2017, 32(33): e4037
[56] RONG W, DING K, GUO S, et al. Metabolomics analysis of Xanthoceras sorbifolia husks protection of rats against Alzheimer’s disease using liquid chromatography mass spectrometry[J].J Chromatogr B, 2019, 1126-1127: 121739
[57] SUN Z, LI Q, BI K. Rapid HPLC-ESI-MS/MS analysis of neurotransmitters in the brain tissue of Alzheimer’s disease rats before and after oral administration of Xanthoceras sorbifolia Bunge[J].J Molecules, 2018, 23(12): 3111
[58] WANG XJ, ZHANG AH, KONG L, et al. Rapid discovery of quality-markers from Kaixin San using chinmedomics analysis approach[J].Phytomedicine, 2019, 54: 371
[59] GAO HL, ZHANG AH, YU JB, et al. High-throughput lipidomics characterize key lipid molecules as potential therapeutic targets of Kaixinsan protects against Alzheimer’s disease in APP/PS1 transgenic mice[J].J Chromatogr B, 2018, 1092: 286
[60] CHU H, ZHANG A, HAN Y, et al. Metabolomics approach to explore the effects of Kai-Xin-San on Alzheimer’s disease using UPLC/ESI-Q-TOF mass spectrometry[J].J Chromatogr B, 2016, 1015-1016: 50
[61] HE Y, WANG Y, LIU S, et al. A metabolomic study of the urine of rats with Alzheimer’s disease and the efficacy of Ding-Zhi-Xiao-Wan on the afflicted rats[J].J Sep Sci, 2020, 43(8): 1458
[62] ZHANG AH, YU JB, SUN H, et al. Identifying quality-markers from Shengmai San protects against transgenic mouse model of Alzheimer’s disease using chinmedomics approach[J].Phytomedicine, 2018, 45: 84
[63] LU S, HAN Y, CHU H, et al. Characterizing serum metabolic alterations of Alzheimer’s disease and intervention of Shengmai-San by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry[J].Food Funct, 2017, 8(4): 1660
[64] SUN LM, ZHU BJ, CAO HT, et al. Explore the effects of Huang-Lian-Jie-Du-Tang on Alzheimer’s disease by UPLC-QTOF/MS-based plasma metabolomics study[J].J Pharm Biomed Anal, 2018, 151: 75
[65] ZHANG Z, YI P, YANG J, et al. Integrated network pharmacology analysis and serum metabolomics to reveal the cognitive improvement effect of Bushen Tiansui formula on Alzheimer’s disease[J].J Ethnopharmacol, 2020, 249: 112371
[66] YE J, YAO JP, WANG X, et al. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury[J].Mol Med Rep, 2016, 13(4): 3083
[67] YAN T, SHANG L, WANG M, et al. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats[J].Metab Brain Dis, 2016, 31(3): 653
[68] YAN T, XU M, WAN S, et al. Schisandra chinensis produces the antidepressant-like effects in repeated corticosterone-induced mice via the BDNF/TrkB/CREB signaling pathway[J].Psychiatry Res, 2016, 243: 135
[69] LI N, WANG Y, LI X, et al. Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge[J].Bioorg Med Chem Lett, 2016, 26(20): 5018
[70] LI W, LU Q, LI X, et al. Anti-Alzheimer’s disease activity of secondary metabolites from Xanthoceras sorbifolia Bunge[J].Food Funct, 2020, 11(3): 2067
[71] DURAIRAJAN SS, HUANG YY, YUEN PY, et al. Effects of Huanglian-Jie-Du-Tang and its modified formula on the modulation of amyloid-beta precursor protein processing in Alzheimer’s disease models[J].PLoS One, 2014, 9(3): e92954
文章导航

/