[1] VUNJAK-NOVAKOVIC G, RONALDSON-BOUCHARD K, RADISIC M. Organs-on-a-chip models for biological research[J]. Cell, 2021, 184(18):4597
[2] AI Y, XIE R, XIONG J, et al. Microfluidics for biosynthesizing: from droplets and vesicles to artificial cells[J]. Small, 2020, 16(9):e1903940
[3] ZHANG KS, NADKARNI AV, PAUL R, et al. Microfluidic surgery in single cells and multicellular systems[J]. Chem Rev, 2022, 122(7):7097
[4] MU X, LIANG Q, HU P, et al. Laminar flow used as “liquid etch mask” in wet chemical etching to generate glass microstructures with an improved aspect ratio[J]. Lab Chip, 2009, 9(14):1994
[5] 张逢, 高丹, 梁琼麟. 微流控技术在生命分析化学中的应用进展[J]. 分析化学, 2016, 44(12):1942
ZHANG F, GAO D, LIANG QL. Advances of microfluidic technologies applied in bio-analytical chemistry[J]. Chin J Anal Chem, 2016, 44(12):1942
[6] WU L, AI Y, XIE R, et al. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models[J]. Lab Chip, 2023, 23(5):1192
[7] HUANG D, WANG J, NIE M, et al. Pollen-inspired adhesive multilobe microparticles from microfluidics for intestinal drug delivery[J]. Adv Mater, 2023, 35(8):e2301192
[8] WANG P, JIN L, ZHANG M, et al. Blood-brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung-brain microphysiological system[J]. Nat Biomed Eng, 2023, 22
[9] ZHANG K, LIANG Q, AI X, et al. Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples[J]. Anal Chem, 2011, 83(20):8029
[10] PAMME N. On-chip bioanalysis with magnetic particles[J]. Curr Opin Chem Biol, 2012, 16(3-4):436
[11] REN K, LIANG Q, MU X, et al. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source[J]. Lab Chip, 2009, 9(5):733
[12] AI X, LIANG Q, LUO M, et al. Controlling gas/liquid exchange using microfluidics for real-time monitoring of flagellar length in living Chlamydomonas at the single-cell level[J]. Lab Chip, 2012, 12(21):4516
[13] AI X, ZHUO W, LIANG Q, et al. A high-throughput device for size based separation of C. elegans developmental stages[J]. Lab Chip, 2014, 14(10):1746
[14] AI Y, HU Z, SHAO Z, et al. Egg-like magnetically immobilized nanospheres: a long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor[J]. Nano Res, 2017, 11(1):287
[15] AI Y, LIU L, JING K, et al. Noncovalently functionalized carbon nanotubes immobilized Fe-Bi bimetallic oxides as a heterogeneous nanocatalyst for reduction of nitroaromatics[J]. Nano Struct Nano Objects, 2017, 10: 116
[16] SUN H, AI Y, LI D, et al. Bismuth iron oxide nanocomposite supported on graphene oxides as the high efficient, stable and reusable catalysts for the reduction of nitroarenes under continuous flow conditions[J]. Chem Eng J, 2017, 314: 328
[17] TAO T, DENG P, WANG Y, et al. Microengineered multi-organoid system from hipscs to recapitulate human liver-islet axis in normal and type 2 diabetes[J]. Adv Sci (Weinh), 2022, 9(5):e2103495
[18] 蔡亚梅, 洪战英, 朱臻宇, 等. 微流控芯片技术在药物活性研究中的应用进展[J]. 药物分析杂志, 2013, 33(11):2013
CAI YM, HONG ZY,ZHU ZY, et al. Applications of microfluidic chip in drug activity research[J]. Chin J Pharm Anal, 2013, 33(11):2013
[19] XU P, XIE R, LIU Y, et al. Bioinspired microfibers with embedded perfusable helical channels[J]. Adv Mater, 2017, 29(34):1701664
[20] 何天稀, 梁琼麟, 王九, 等. 脂质体类药物载体的微流控制备[J]. 化学进展, 2018, 30(11):1734
HE TX, LIANG QL, WANG J, et al. Microfluidic fabrication of liposomes as drug carriers[J]. Prog Chem, 2018, 30(11):1734
[21] XIE R, XU P, LIU Y, et al. Necklace-like microfibers with variable knots and perfusable channels fabricated by an oil-free microfluidic spinning process[J]. Adv Mater, 2018, 30(14):e1705082
[22] WU Z, WANG H, WU J, et al. High-sensitivity and high-resolution therapeutic antibody charge variant and impurity characterization by microfluidic native capillary electrophoresis-mass spectrometry[J]. J Pharm Biomed Anal, 2023, 223: 115147
[23] 解笑瑜, 甄雪燕, 王嗣岑, 等. 2018年度药物分析技术研究进展[J]. 药物分析杂志, 2020, 40(5):767
XIE XY, ZHEN XY, WANG SC, et al. Advances in technology of pharmaceutical analysis in 2018[J]. Chin J Pharm Anal, 2020, 40(5):767
[24] 鲁金月, 王莹, 徐慧, 等. 我国药物分析前沿技术十年发展回顾[J]. 中国药学杂志, 2023, 58(8):649
LU JY, WANG Y, XU H, et al. Review on the research of progress of china pharmaceutical analysis in the past decade[J]. Chin Pharm J, 2023, 58(8):649
[25] 艾永建, 何梦崎, 王一涛, 等. 经典方药治疗溃疡性结肠炎的研究进展[J]. 中国中药杂志, 2022, 47(21):5797
AI YJ, HE MY, WANG YT, et al. Review of classical prescriptions in treatment of ulcerative colitis[J]. China J Chin Mater Med, 2022, 47(21):5797
[26] 曹萌, 葛渊源, 张景辰, 等. 药物分析新技术在药品科学监管中的应用[J]. 中国药事, 2021, 35(6):614
CAO M, GE YY, ZHANG JC, et al. Application of drug analysis innovative technology in drug scientific regulations[J]. Chin Pharm Aff, 2021, 35(6):614
[27] 詹蕾, 黄承志. 药物分析及药物分析学发展史探究[J]. 西南师范大学学报, 2022, 47(7):97
ZHAN L, HUANG CZ. Research on pharmaceutical analysis and development history of drug analysis[J]. J Southwest China Norm Univ, 2022, 47(7):97
[28] YANG Z, ZHOU Z, SI T, et al. High throughput confined migration microfluidic device for drug screening[J]. Small, 2023, 19(16):e2207194
[29] SU Z, HE J, ZHOU P, et al. A high-throughput system combining microfluidic hydrogel droplets with deep learning for screening the antisolvent-crystallization conditions of active pharmaceutical ingredients[J]. Lab Chip, 2020, 20(11):1907
[30] YIN F, ZHANG X, WANG L, et al. HiPSC-derived multi-organoids-on-chip system for safety assessment of antidepressant drugs[J]. Lab Chip, 2021, 21(3):571
[31] KASIM M, GENCTURK E, ULGEN K. Real-time single-cell monitoring of drug effects using droplet-based microfluidic technology: a proof-of-concept study[J]. OMICS, 2021, 25(10):641
[32] ELVIRA KS. Microfluidic technologies for drug discovery and development: friend or foe?[J]. Trends Pharmacol Sci, 2021, 42(7):518
[33] AI Y, HU Z, LIANG X, et al. Recent advances in nanozymes: from matters to bioapplications[J]. Adv Funct Mater, 2021, 32(14):2110432
[34] AI Y, SUN H, GAO Z, et al. Dual enzyme mimics based on metal-ligand cross-linking strategy for accelerating ascorbate oxidation and enhancing tumor therapy[J]. Adv Funct Mater, 2021, 31(40):2103581
[35] AI Y, YOU J, GAO J, et al. Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation[J]. Nano Res, 2021, 14(8):2644
[36] LI N, ZHANG T, CHEN G, et al. Recent advances in sample preparation techniques for quantitative detection of pharmaceuticals in biological samples[J]. Trend Anal Chem, 2021, 142: 116318
[37] FUCHS S, JOHANSSON S, TJELL A, et al. In-line analysis of organ-on-chip systems with sensors: integration, fabrication, challenges, and potential[J]. ACS Biomater Sci Eng, 2021, 7(7):2926
[38] FERNANDEZ-CARRO E, ANGENENT M, GRACIA-CAZANA T, et al. Modeling an optimal 3D skin-on-chip within microfluidic devices for pharmacological studies[J]. Pharmaceutics, 2022, 14(7):1417
[39] WANG Z, LIU Z, LI L, et al. Investigation into the hypoxia-dependent cytotoxicity of anticancer drugs under oxygen gradient in a microfluidic device[J]. Microfluid Nanofluid, 2015, 19(6):1271
[40] AI Y, ZHANG F, WANG C, et al. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test[J]. Trend Anal Chem, 2019, 117: 215
[41] HU W, GAO D, SU Z, et al. A cellular chip-MS system for investigation of Lactobacillus rhamnosus GG and irinotecan synergistic effects on colorectal cancer[J]. Chin Chem Lett, 2022, 33(4):2096
[42] JIA X, YANG X, LUO G, et al. Recent progress of microfluidic technology for pharmaceutical analysis[J]. J Pharm Biomed Anal, 2022, 209: 114534
[43] LIANG Z, LIU Y, ZHANG F, et al. Dehydration-triggered shape morphing based on asymmetric bubble hydrogel microfibers[J]. Soft Matter, 2018, 14(32):6623
[44] LIU Y, XU P, LIANG Z, et al. Hydrogel microfibers with perfusable folded channels for tissue constructs with folded morphology[J]. RSC Adv, 2018, 8(42):23475
[45] CHEN Y, ZHAO D, XIAO F, et al. Microfluidics-enabled serial assembly of lipid-sirna-sorafenib nanoparticles for synergetic hepatocellular carcinoma therapy[J]. Adv Mater, 2023, 35(13):e2209672
[46] LIU C, ZHENG W, XIE R, et al. Microfluidic fabrication of water-in-water droplets encapsulated in hydrogel microfibers[J]. Chin Chem Lett, 2019, 30(2):457
[47] XIE R, ZHENG W, GUAN L, et al. Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues[J]. Small, 2020, 16(15):1902838
[48] 吴佳颖, 李栋基, 陈翔, 等. 基于微流控芯片技术的秀丽隐杆线虫药物筛选体系研究进展[J]. 药物分析杂志, 2021, 41(6):929
WU JY, LI DJ, CHEN X, et al. Advances in drug screening of C. elegans based on microfluidic chip techniques[J]. Chin J Pharm Anal, 2021, 41(6):929
[49] ZHENG W, XIE R, LIANG X, et al. Fabrication of biomaterials and biostructures based on microfluidic manipulation[J]. Small, 2022, 18(16):e2105867
[50] WANG C, HU W, GUAN L, et al. Single-cell metabolite analysis on a microfluidic chip[J]. Chin Chem Lett, 2022, 33(6):2883
[51] MAVRAKIS E, TOPRAKCIOGLU Z, LYDAKIS-SIMANTIRIS N, et al. A chip-based supersonic microfluidic nebulizer for efficient sample introduction into inductively coupled plasma-mass spectrometry[J]. Anal Chim Acta, 2022, 1229: 340342
[52] MEN X, WU CX, ZHANG X, et al. Tracking cellular transformation of As(Ⅲ) in HepG2 cells by single-cell focusing/capillary electrophoresis coupled to ICP-MS[J]. Anal Chim Acta, 2022, 1226: 340268
[53] ABDULSATTAR JO, HADI H, RICHARDSON S, et al. Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (muPADs)[J]. Anal Chim Acta, 2020, 1136: 196
[54] U VT, GHOSH S, MILLEMAN A, et al. A new polymer lab-on-a-chip (LOC) based on a microfluidic capillary flow assay (MCFA) for detecting unbound cortisol in saliva[J]. Lab Chip, 2020, 20(11):1961
[55] CARILLO S, JAKES C, BONES J. In-depth analysis of monoclonal antibodies using microfluidic capillary electrophoresis and native mass spectrometry[J]. J Pharm Biomed Anal, 2020, 185: 113218
[56] GRAF HG, RUDISCH BM, UDE L, et al. Picomolar detection limits for glyphosate by two-dimensional column-coupled isotachophoresis/capillary zone electrophoresis-mass spectrometry[J]. J Sep Sci, 2022, 45(20):3887
[57] CAO L, FABRY D, LAN K. Rapid and comprehensive monoclonal antibody characterization using microfluidic CE-MS[J]. J Pharm Biomed Anal, 2021, 204: 114251
[58] LI L, WANG W, DING M, et al. Single-cell-arrayed agarose chip for in situ analysis of cytotoxicity and genotoxicity of dna cross-linking agents[J]. Anal Chem, 2016, 88(13):6734
[59] LI Y, LI L, LIU Z, et al. A microfluidic chip of multiple-channel array with various oxygen tensions for drug screening[J]. Microfluid Nanofluid, 2016, 20(7):97
[60] XIE R, LIANG Z, AI Y, et al. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes[J]. Nat Protoc, 2021, 16(2):937
[61] AI Y, SUN H, WANG C, et al. Tunable assembly of organic-inorganic molecules into hierarchical superstructures as ligase mimics for enhancing tumor photothermal therapy[J]. Small, 2022, 18(10):e2105304
[62] MA LD, WANG YT, WANG JR, et al. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids[J]. Lab Chip, 2018, 18(17):2547
[63] LIU W, LIU D, HU R, et al. An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation[J]. Analyst, 2020, 145(20):6447
[64] WANG Y, SHAO Z, ZHENG W, et al. A 3D construct of the intestinal canal with wrinkle morphology on a centrifugation configuring microfluidic chip[J]. Biofabrication, 2019, 11(4):045001
[65] LEE J, KIM J, CUI B, et al. Hybrid skin chips for toxicological evaluation of chemical drugs and cosmetic compounds[J]. Lab Chip, 2022, 22, 343
[66] ZHANG J, CHEN Z, ZHANG Y, et al. Construction of a high fidelity epidermis-on-a-chip for scalable in vitro irritation evaluation[J]. Lab Chip, 2021, 21(19):3804
[67] XIE R, KOROLJ A, LIU C, et al. h-FIBER: microfluidic topographical hollow fiber for studies of glomerular filtration barrier[J]. ACS Cent Sci, 2020, 6(6):903
[68] LIANG Z, LIU C, LI L, et al. Double-network hydrogel with tunable mechanical performance and biocompatibility for the fabrication of stem cells-encapsulated fibers and 3D assemble[J]. Sci Rep, 2016, 6: 33462
[69] SERRAS AS, RODRIGUES JS, CIPRIANO M, et al. A critical perspective on 3D liver models for drug metabolism and toxicology studies[J]. Front Cell Dev Biol, 2021, 9: 626805
[70] ZHENG L, WANG B, SUN Y, et al. An oxygen-concentration-controllable multiorgan microfluidic platform for studying hypoxia-induced lung cancer-liver metastasis and screening drugs[J]. ACS Sens, 2021, 6(3):823
[71] CHOI HS, AHN GN, NA GS, et al. A perfluoropolyether microfluidic device for cell-based drug screening with accurate quantitative analysis[J]. ACS Biomater Sci Eng, 2022, 8(10):4577
[72] TANG Y, QIU QF, ZHANG FL, et al. Quantifying orientational regeneration of injured neurons by natural product concentration gradients in a 3D microfluidic device[J]. Lab Chip, 2018, 18(6):971
[73] LI L, LI Y, SHAO Z, et al. Simultaneous assay of oxygen-dependent cytotoxicity and genotoxicity of anticancer drugs on an integrated microchip[J]. Anal Chem, 2018, 90(20):11899
[74] WANG W, LI L, DING M, et al. A microfluidic hydrogel chip with orthogonal dual gradients of matrix stiffness and oxygen for cytotoxicity test[J]. Biochip J, 2018, 12(2):93
[75] MA J, LI N, WANG Y, et al. Engineered 3D tumour model for study of glioblastoma aggressiveness and drug evaluation on a detachably assembled microfluidic device[J]. Biomed Microdevices, 2018, 20(3):80
[76] CHEN Y, YANG Y, ZENG X, et al. Microfluidic chip interfacing microdialysis and mass spectrometry for in vivo monitoring of nanomedicine pharmacokinetics in real time[J]. J Chromatogr A, 2022, 1683: 463520
[77] QU Y, AN F, LUO Y, et al. A nephron model for study of drug-induced acute kidney injury and assessment of drug-induced nephrotoxicity[J]. Biomaterials, 2018, 155: 41
[78] AI Y, HE M, WAN C, et al. Nanoplatform-based reactive oxygen species scavengers for therapy of ischemia-reperfusion injury[J]. Adv Ther, 2022, 5(11):2200066
[79] KLATT JN, SCHWARZ I, HUTZENLAUB T, et al. Miniaturization, parallelization, and automation of endotoxin detection by centrifugal microfluidics[J]. Anal Chem, 2021, 93(24):8508
[80] MACIEL E, VARGAS MEDINA D, BORSATTO J, et al. Towards a universal automated and miniaturized sample preparation approach[J]. Sustain Chem Pharm, 2021, 21: 100427
[81] SRIKANTH S, MOHAN J, RAUT S, et al. Droplet based microfluidic device integrated with ink jet printed three electrode system for electrochemical detection of ascorbic acid[J]. Sensor Actuat A: Phys, 2021, 325: 112685
[82] CHENG SB, CHEN MM, WANG YK, et al. A three-dimensional conductive scaffold microchip for effective capture and recovery of circulating tumor cells with high purity[J]. Anal Chem, 2021, 93(18):7102
[83] LIU Y, SUN L, ZHANG H, et al. Microfluidics for drug development: from synthesis to evaluation[J]. Chem Rev, 2021, 121(13):7468
[84] WANG B, LI Y, ZHOU M, et al. Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence[J]. Nat Commun, 2023, 14(1):1341
[85] SHI SW, LOU Q, FANG Q. Petrel probe: an integrated in situ sampling and injection interface for fast, high-efficiency liquid chromatography-mass spectrometry analysis[J]. Anal Chem, 2021, 93(29):10114
[86] MU X, LIANG Q, HU P, et al. Selectively modified microfluidic chip for solvent extraction of Radix Salvia Miltiorrhiza using three-phase laminar flow to provide double liquid-liquid interface area[J]. Microfluid Nanofluid, 2009, 9(2-3) 365
[87] 王鹤辰, 包永睿, 王帅, 等. 基于微流控芯片技术的中药小蓟诱导肺癌A549细胞凋亡用药部位精准分析[J]. 药物分析杂志, 2019, 39(3):393
WANG HC, BAO YY, WANG S, et al. Precise analysis of the apoptosis effect of medicinal parts of Cirsium setosum to lung cancer A549 cell based on microfluidic chip[J]. Chin J Pharm Anal, 2019, 39(3):393
[88] LIU Y, WANG M, LIU R, et al. Label-free microfluidic device reveals single cell phagocytic activity and screens plant medicine rapidly[J]. Lab Chip, 2023, 23(3):553
[89] CAI Q, MENG J, GE Y, et al. Fishing antitumor ingredients by G-quadruplex affinity from herbal extract on a three-phase-laminar-flow microfluidic chip[J]. Talanta, 2020, 220:121368
[90] ZHANG Y, CHEN S, FAN F, et al. Neurotoxicity mechanism of aconitine in HT22 cells studied by microfluidic chip-mass spectrometry[J]. J Pharm Anal, 2023, 13(1):88
[91] HE X, CHEN R, ZHU X, et al. Laser assisted microfluidic membrane evaporator for sample crystallization separation[J]. Sep Purif Technol, 2020, 242: 116817
[92] SMIRNOVA A, OHTA R, MORI E, et al. Enzyme-linked immunosorbent assay using thin-layered microfluidics with perfect capture of the target protein[J]. Anal Methods, 2023, 15(5):675
[93] KLING A, DIRSCHERL L, DITTRICH P. Laser-assisted protein micropatterning in a thermoplastic device for multiplexed prostate cancer biomarker detection[J]. Lab Chip, 2023, 23(3):534
[94] AKHTAR AS, SOARES RRG, PINTO IF, et al. A portable and low-cost centrifugal microfluidic platform for multiplexed colorimetric detection of protein biomarkers[J]. Anal Chim Acta, 2023, 1245: 340823
[95] YANG Y, LIU S, CHEN C, et al. Microfluidic-enabled self-organized tumor model for in vitro cytotoxicity assessment of doxorubicin[J]. Biomed Microdevices, 2020, 22(4):70
[96] CHONG LH, CHING T, FARM HJ, et al. Integration of a microfluidic multicellular coculture array with machine learning analysis to predict adverse cutaneous drug reactions[J]. Lab Chip, 2022, 22(4):1890
[97] AN F, QU Y, LUO Y, et al. A laminated microfluidic device for comprehensive preclinical testing in the drug ADME process[J]. Sci Rep, 2016, 6: 25022
[98] GRANT J, OZKAN A, OH C, et al. Simulating drug concentrations in PDMS microfluidic organ chips[J]. Lab Chip, 2021, 21(18):3509
[99] HOROWITZ L, RODRIGUEZ A, AU-YEUNG A, et al. Microdissected “cuboids” for microfluidic drug testing of intact tissues[J]. Lab Chip, 2021, 21(1):122
[100] AHN J, KIM D, KOO D, et al. 3D microengineered vascularized tumor spheroids for drug delivery and efficacy testing[J]. Acta Biomater, 2023, 165: 153
[101] SHI Y, HE X, WANG H, et al. Construction of a novel blood brain barrier-glioma microfluidic chip model: applications in the evaluation of permeability and anti-glioma activity of traditional Chinese medicine components[J]. Talanta, 2023, 253: 123971
[102] PENG B, TONG Z, TONG W, et al. In situ surface modification of microfluidic blood-brain-barriers for improved screening of small molecules and nanoparticles[J]. ACS Appl Mater Interfaces, 2020, 12(51):56753
[103] MIDKIFF D, SAN-MIGUEL A. Microfluidic technologies for high throughput screening through sorting and on-chip culture of C. elegans[J]. Molecules, 2019, 24(23):4292
[104] KHALILI A, WIJNGAARDEN E, ZOIDL G, et al. Simultaneous screening of zebrafish larvae cardiac and respiratory functions: a microfluidic multi-phenotypic approach[J]. Integr Biol, 2022, 14(7):162
[105] TANG M, DUAN X, YANG A, et al. Fish capsules: a system for high-throughput screening of combinatorial drugs[J]. Adv Sci, 2022, 9(9):e2104449
[106] SUBENDRAN S, WANG Y, LU Y, et al. The evaluation of zebrafish cardiovascular and behavioral functions through microfluidics[J]. Sci Rep, 2021, 11(1):13801
[107] ZHANG B, ZHUANG L, SUN D, et al. An integrated microfluidics for assessing the anti-aging effect of caffeic acid phenethylester in Caenorhabditis elegans[J]. Electrophoresis, 2021, 42(6):742