成分分析

药物分析中基于多糖的手性反相液相色谱筛选策略的评价*

展开
  • 1.连云港市食品药品检验检测中心药理检验室, 连云港 223001;
    2.连云港市食品药品检验检测中心化学检验室, 连云港 223001;
    3.上海君实生物工程有限公司,上海 201306
第一作者 Tel: 18360578333;E-mail:yyyy1561@163.com

修回日期: 2023-11-10

  网络出版日期: 2024-06-21

基金资助

* 江苏省自然科学基金资助项目(No.BK20180632)

Evaluation of polysaccharide based chiral reversed phase liquid chromatography screening strategy in drug analysis*

Expand
  • 1. Pharmacological Laboratory, Lianyungang Institute for Food and Drug Control, Lianyungang 223001, China;
    2. Chemical laboratory, Lianyungang Institute for Food and Drug Control, Lianyungang 223001, China;
    3. Shanghai Junshi Biotechnology Co., Ltd, Shanghai 201306, China

Revised date: 2023-11-10

  Online published: 2024-06-21

摘要

目的:手性控制在立体异构药物的开发中起着至关重要的作用。由于手性分离的复杂性和缺乏可预测性,柱筛选仍然是启动活性药物成分和合成中间体手性方法开发的金标准。手性反相液相色谱(RPLC)因它在各种基质中的通用性而获得了研究者的青睐,基于此方法进一步探索基于层的手性RPLC筛选策略,用于筛选和分析原料药或中间体。方法:构建和分析手性药物数据库原料药或中间体的手性筛选数据库,共3 401个条目,建立了基于层的手性RPLC筛选策略。结果:用梯度洗脱法筛选了17种多糖基手性固定相和4种流动相。选择10个含有2个流动相的手性固定相,成功地分离了82%的筛网。提出了2个手性RPLC筛选层,第1层(AZ、OD、ID和IG)和第2层(AY、OJ、OZ、IA、IC和IH)以及2个流动相,以使第1层的命中率达到70%,组合集的命中率达到80%。结论:建立了相对简洁高效的多糖手性RPLC筛选策略,且该系统可实自动报告和适用性良好。

本文引用格式

陈泳君, 戴丽娜, 毕艺成 . 药物分析中基于多糖的手性反相液相色谱筛选策略的评价*[J]. 药物分析杂志, 2023 , 43(12) : 2038 -2043 . DOI: 10.16155/j.0254-1793.2023.12.07

Abstract

Objective: Chiral control plays an important role in development of stereoisomeric drugs. Due to the complexity and lack of predictability of chiral separation, column screening is still the gold standard to start the development of chiral methods for active pharmaceutical ingredients (APIs) and synthetic intermediates. Chiral reversed-phase liquid chromatography(RPLC) has been favored by other methods because of its universality in various matrices. Methods: The chiral drug database and the chiral screening database of APIs or intermediates were constructed and analyzed, with a total of 3 401 entries. A chiral RPLC screening strategy based on layer was established. Results: Seven-teen kinds of polysaccharide chiral stationary phases and 4 kinds of mobile phases were screened by gradient elution. Ten chiral solid phases(CSPs) containing two mobile phases(MPs) were selected and 82% of the screens were successfully separated. Two chiral RPLC screening layers (layer 1: AZ, OD, ID and IG) and (layer 2: AY, OJ, OZ, IA, IC and IH) and two MPs were proposed to make the hit rate of layer 1 reach 70% and the hit rate of combination set reach 80%. Conclusion: A relatively simple and efficient screening strategy of polysaccharide chiral reversed phase liquid chromatography is established, and the system can report automatically and has good applicability.

参考文献

[1] GLICK G, GHOSH S, OLHAVA EJ, et al. Cyclic Dinucleotides for Treating Conditions Associated with STING Activity Such as Cancer: US, 10723756B2[P]. 2020-01-01
[2] STALCUP AM. Chiral separations[J]. Annu Rev Anal Chem, 2010, 3: 341
[3] OKAMOTO Y, IKAI T. Chiral HPLC for efficient resolution of enantiomers[J]. Chem Soc Rev, 2008, 37(12): 2593
[4] JM PADRÓ, KEUNCHKARIAN S. State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography(2013-2017)[J]. Microchemical J, 2018, 140(20):142
[5] DE KLERCK K, MANGELINGS D, VANDER HEYDEN Y. Supercritical fluid chromatography for the enantioseparation of pharmaceuticals[J]. J Pharm Biomed Anal, 2012, 69: 77
[6] NOVAKOVA L, DOUSA M. General screening and optimization strategy for fast chiral separations in modern supercritical fluid chromatography[J]. Anal Chim Acta, 2017, 950(24):199
[7] XIE SM, CHEN XX. Gas chromatographic separation of enantiomers on novel chiral stationary phases[J]. Trends Anal Chem, 2020, 124: 115808
[8] CHANKVETADZE B. Enantioseparations by using capillary electrophoretic techniques. The story of 20 and a few more years[J]. J Chromatogr A, 2007, 1168(1-2):45
[9] ZHANG Q. Ionic liquids in capillary electrophoresis for enantio separation[J]. Trends Anal Chem, 2018, 100(6):45
[10] LMMERHOFER M. Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases[J]. J Chromatogr A, 2010, 1217(6):814
[11] PELUSO P, MAMANE V, DALLOCCHIO R, et al. Noncovalent interactions in high-performance liquid chromatography enantioseparations on polysaccharide-based chiral selectors[J]. J Chromatogr A, 2020, 1623(124):461202
[12] SHERIDAN R, SCHAFER W, PIRAS P, et al. Toward structure-based predictive tools for the selection of chiral stationary phases for the chromatographic separation of enantiomers[J]. J Chromatogr A, 2016, 1467: 206
[13] RANDAZZO GM, TONOLI D, HAMBYE S, et al. Prediction of retention time in reversed-phase liquid chromatography as a tool for steroid identification[J]. Anal Chim Acta, 2016, 916(23):8
[14] YASHIMA E. Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation[J]. J Chromatogr A, 2001, 906(1-2):105
[15] MUTTON IM. Chapter 2 fast generic HPLC methods[J]. Handbook Anal Separat, 2000: 73
[16] FEKETE S, FEKETE J. Fast gradient screening of pharmaceuticals with 5 cm long, narrow bore reversed-phase columns packed with sub-3 μm core-shell and sub-2 μm totally porous particles[J]. Talanta, 2011, 84(2):416
[17] PERRIN C, VU VA, MATTHIJS N, et al. Screening approach for chiral separation of pharmaceuticals Part I. normal-phase liquid chromatography[J]. J Chromatography A, 2002, 947(1):69
文章导航

/