安全监测

超临界流体色谱法测定利福昔明及其制剂的杂质谱

展开
  • 上海市食品药品检验研究院,上海201203
第一作者 Tel:18001677205; E-mail:dannyzhaoj@163.com
*Tel:13788965965; E-mail:liuhao1968@hotmail.com

收稿日期: 2021-07-08

  网络出版日期: 2024-06-21

Determination of the impurity profiling in rifaximin and its preparations using supercritical fluid chromatography

Expand
  • Shanghai Institute for Food and Drug Control, Shanghai 201203, China

Received date: 2021-07-08

  Online published: 2024-06-21

摘要

目的:建立利福昔明及其制剂杂质谱分析的超临界流体色谱法(SFC法)。方法:采用Torus DIOL(100 mm×3.0 mm,1.7 μm)色谱柱,以二氧化碳-乙醇和异丙醇的混合溶液(90∶10)为流动相,梯度洗脱,流速1.2 mL·min-1,柱温35 ℃,背压13.8 MPa;检测波长240 nm。结果:该方法可实现利福昔明杂质A、利福昔明Y+羟基利福昔明之间、工艺副产物和降解杂质之间及利福昔明和其相邻杂质之间的良好分离,分析速度快,该方法减小了有机试剂如甲醇和乙腈的消耗量,更为绿色环保;且可以与质谱仪直接串联,利于未知杂质的结构推测。结论:本方法可同时测定利福昔明及其制剂中的有关物质,可以区分不同工艺来源的利福昔明原料,为制剂原料供应商的筛选和制剂工艺的监控提供技术保障。

本文引用格式

赵敬丹, 刘浩 . 超临界流体色谱法测定利福昔明及其制剂的杂质谱[J]. 药物分析杂志, 2021 , 41(10) : 1806 -1811 . DOI: 10.16155/j.0254-1793.2021.10.18

Abstract

Objective: To develop a supercritical fluid chromatography (SFC) method to determine the related substances in rifaximin and its preparations. Methods: A Torus DIOL column (100 mm×3.0 mm,1.7 μm) was used. The mobile phase was CO2-the mixture of alcohol and isopropanol (90∶10) at a flow rate of 1.2 mL·min-1 with gradient mode, the column temperature was 35 ℃, the detection wavelength was 240 nm and the back pressure was 13.8 MPa. Results: Satisfied resolutions were obtained between rifaximin related process impurities, degraded impurities, rifaximin impurity A and impurity Y & hydroxy rifaximin, rifaximin and adjacent impurities. And the method was proved rapid, green, and was convenient to identify unknown impurities directly by be connected to mass detector. Conclusion: The method can be used to determine the related substances in rifaximin and its preparations, and it will play a unique and important role in fast quality evaluation of rifaximin and its preparations by distinguishing the quality of substances from different manufactures.

参考文献

[1] 樊硕, 孙静波, 李静, 等. 利福昔明联合乳果糖对肝性脑病转归的影响及其机制探讨[J].实用药物与临床, 2019, 22(6): 606
FAN S, SUN JB, LI J, et al. Effects of rifaximin combined with lactulose on the prognosis of hepatic encephalopathy and study on its mechanism[J].Pract Pharm Clin Remed, 2019, 22(6): 606
[2] 韩伟, 赵丽, 周金池, 等. 利福昔明在胃肠道疾病中的应用现状[J].胃肠病学和肝病学杂志, 2020, 29(4): 466
HAN W, ZHAO L, ZHOU JC, et al. Application situation of rifaximin in gastrointestinal disease[J].Chin J Gastroenterol Hepatol, 2020, 29(4): 466
[3] 刘超, 胡昌勤, 金少鸿. 利福昔明的杂质A和杂质B的稳定性研究[J].安徽农业科学, 2011, 39(12): 6947
LIU C, HU CQ, JIN SH. Stability research on the impurity A and impurity B of rifaximin[J].J Anhui Agric Sci, 2011, 39(12): 6947
[4] 王小亮, 张秉华, 梁亚伟, 等. HPLC法测定利福昔明片的有关物质[J].中国药师, 2019, 22(6): 1179
WANG XL, ZHANG BH, LIANG YW, et al. Determination of the related substances in rifaximin tablets by HPLC[J].China Pharm, 2019, 22(6): 1179
[5] SCHMIDTSDORFF S, SCHMIDT AH. Simultaneous detection of nitrosamines and other sartan-related impurities in active pharmaceutical ingredients by supercritical fluid chromatography[J].J Pharm Biomed Anal, 2019, 174: 151
[6] PLACHKÁ K, ŠVEC F, NOVÁKOVÁ L. Ultra-high-performance supercritical fluid chromatography in impurity control: searching for generic screening approach[J].Anal Chim Acta, 2018, 1039: 149
[7] PLACHÁ K, KHALIKOVA M, BABIOVÁ B, et al. Ultra-high-performance supercritical fluid chromatography in impurity control Ⅱ: method validation[J].Anal Chim Acta, 2020, 1117: 48
[8] PIRRONE GF, MATHEW RM, MAKAROV AA, et al. Supercritical fluid chromatography-photodiode array detection-electrospray ionization mass spectrometry as a framework for impurity fate mapping in the development and manufacture of drug substances[J].J Chromatogr B, 2018, 1080: 42
[9] DISPAS A, MARINI R, DESFONTAINE V, et al. First inter-laboratory study of a supercritical fluid chromatography method for the determination of pharmaceutical impurities[J].J Pharm Biomed Anal, 2018, 161: 414
[10] WEST C, LEMASSON E, BERTIN S, et al. Interest of achiral-achiral tandem columns for impurity profiling of synthetic drugs with supercritical fluid chromatography[J].J Chromatogr A, 2018, 1534: 161
[11] LEMASSON E, BERTIN S, HENNIG P, et al. Comparison of ultra-high performance methods in liquid and supercritical fluid chromatography coupled to electrospray ionization-mass spectrometry for impurity profiling of drug candidates[J].J Chromatogr A, 2016, 1472: 117
[12] GALEA CM, DIDION D, CLICQ D, et al. Method optimization for drug impurity profiling in supercritical fluid chromatography: application to a pharmaceutical mixture[J].J Chromatogr A, 2017, 1526: 128
[13] DISPAS A, DESFONTAINE V, ANDRI B, et al. Quantitative determination of salbutamol sulfate impurities using achiral supercritical fluid chromatography[J].J Pharm Biomed Anal, 2017, 134: 170
[14] ANDRI B, LEBRUN P, DISPAS A, et al. Optimization and validation of a fast supercritical fluid chromatography method for the quantitative determination of vitamin D3 and its related impurities[J].J Chromatogr A, 2017, 1491: 171
[15] GALEA CM, SLOSSE A, MANGELINGS D, et al. Investigation of the effect of column temperature and back-pressure in achiral supercritical fluid chromatography within the context of drug impurity profiling[J].J Chromatogr A, 2017, 1518: 78
[16] LI W, WANG J, YAN ZY. Development of a sensitive and rapid method for rifampicin impurity analysis using supercritical fluid chromatography[J].J Pharm Biomed Anal, 2015, 114: 341
文章导航

/