目的: 建立抗CD79b单抗及抗CD79b单抗-vc-MMAE的表面等离子共振(surface plasmon resonance, SPR)法和酶联免疫吸附测定(enzyme linked immunosorbent assay, ELISA)法评价其结合活性。方法: 采用SPR法,使用Protein A芯片,测定抗CD79b单抗及抗CD79b单抗-vc-MMAE与其靶点CD79b蛋白之间的动力学常数包括结合常数(Ka)和解离常数(Kd)、亲和力常数(KD)、半最大效应浓度(half maximal effective concentration, EC50)及相对效价;采用经典ELISA法测定抗CD79b单抗及抗CD79b单抗-vc-MMAE与CD79b的EC50及相对效价。结果: 经3次实验测定,抗CD79b单抗与CD79b的Ka为(2.61±0.14)×106 L·mol-1·s-1,Kd为(1.87±0.12)×10-2 s-1,KD为(7.17±0.30)×10-9 mol·L-1,RSD均<10%;抗CD79b单抗-vc-MMAE与CD79b的Ka为(2.99±0.26)×106 L·mol-1·s-1,Kd为(1.46±0.04)×10-2 s-1,KD为(4.88±0.31)×10-9 mol·L-1,RSD均<10%。经3次实验测定,SPR法测得抗CD79b单抗与CD79b的EC50为(78.68±6.35)ng·mL-1,相对效价为(84.62±6.63)%,RSD均<10%;测得抗CD79b单抗-vc-MMAE与CD79b的EC50为(35.93±0.75) ng·mL-1,相对效价为(84.74±1.76)%,RSD均<5%。经3次实验测定,ELISA法测得抗CD79b单抗与CD79b的EC50为(22.66±0.41) ng·mL-1,相对效价为(95.70±1.74)%,RSD均<5%;测得抗CD79b单抗-vc-MMAE与CD79b的EC50为(69.19±1.71) ng·mL-1,相对效价为(97.64±2.39)%,RSD均<5%,SPR和ELISA 2种方法结果基本一致。结论: 建立了抗CD79b单抗及抗CD79b单抗-vc-MMAE的SPR法,并对靶点结合的动力学、亲和力进行评价,与ELISA方法在EC50及相对效价方面进行了对比,为该类抗体偶联药物的研发提供参考。
Objective: To study the binding activity of anti-CD79b antibody and anti-CD79b antibody-vc- MMAE by establishing surface plasmon resonance(SPR) and enzyme linked immunosorbent assay(ELISA) measures. Methods: In this experiment, SPR and Protein A chip were used to determine the kinetic constants, including binding constant(Ka), dissociation constant (Kd), affinity constant(KD), half maximal effective concentration(EC50) and relative potency between anti-CD79b antibody and anti-CD79b antibody-vc-MMAE and their target CD79b protein. Classical ELISA was used to determine the EC50 and relative potency of anti-CD79b antibody and anti-CD79b antibody-vc-MMAE with CD79b. Results: After three experiments, the kinetic and affinity parameters between anti-CD79b antibody and CD79b include: Ka, Kd and KD, which were (2.61±0.14)×106 L·mol-1·s-1, (1.87±0.12)×10-2 s-1, (7.17±0.30)×10-9mol·L-1 respectively, RSDs were<10%. The kinetic and affinity parameters between anti-CD79b antibody-vc-MMAE and CD79b include: Ka, Kd and KD, which were(2.99±0.26)×106 L·mol-1·s-1, (1.46±0.04)×10-2 s-1, (4.88±0.31)×10-9 mol·L-1 respectively, RSDs were<10%. After three experiments, the EC50 and relative potency between anti-CD79b antibody and CD79b determined by SPR were (78.68±6.35) ng·mL-1, (84.62±6.63)% respectively, RSDs were<10%. The EC50 and relative potency between anti-CD79b antibody-vc-MMAE and CD79b determined by SPR were (35.93±0.75) ng·mL-1, (84.74±1.76)% respectively, RSDs were<5%. The EC50 and relative potency between anti-CD79b antibody and CD79b determined by ELISA were (22.66±0.41) ng·mL-1, (95.70±1.74)% respectively, RSDs were<5%. The EC50 and relative potency between anti-CD79b antibody-vc-MMAE and CD79b determined by ELISA were (69.19±1.71) ng·mL-1, (97.64±2.39)% respectively, RSDs were <5%. The results of SPR and ELISA were basically consistent. Conclusion: In this study, the kinetic and affinity parameters of anti-CD79b antibody and anti-CD79b antibody-vc-MMAE against target binding were determined by SPR.The EC50 and relative potency analyzed by SPR and ELISA are compared. The study provides a reference for the development of this kind of ADC drugs.
[1] 武刚, 付志浩, 徐刚领, 等. 抗体偶联药物研发进展[J].生物医学转化, 2021, 2(4):1
WU G, FU ZH, XU GL, et al. Progresses in research and development of antibody-drug conjugate[J].Biomed Transform, 2021,2(4):1
[2] THOMASA, TEICHERBA, HASSAN R. Antibody-drug conjugates for cancer therapy[J].Lancet Oncol, 2016, 17(6):e254
[3] CHUPG, ARBER DA. CD79: a review[J].Appl Immunohistoche Mol Morphol, 2001, 9(2): 97
[4] BOURBON E, SALLES G. Polatuzumab vedotin: an investigational anti-CD79b antibody drug conjugate for the treatment of diffuse large B-cell lymphoma[J].Expert Opin Investig Drugs,2020, 29(10):1079
[5] SAWALHAY, MADDOCKSK. Profile of polatuzumabvedotin in the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: abrief report on the emerging clinical data[J].Onco Targets Ther, 2020, 13: 5123
[6] 周莉婷, 胡莹莹, 徐隆昌, 等. 贝伐珠单抗生物类似药质量相似性评价探讨[J].中国生物工程杂志, 2020, 40(11): 102
ZHOU LT, HU YY, XU LC, et al. Discussion on the quality similarity assessment of bevacizumab biosimilar[J].China Biotechnol, 2020, 40(11): 102
[7] AYDINS. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA[J].Peptides, 2015,72: 4
[8] CHEN K,ZENG Y, WANG L, et al. Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions[J].J Biomed Opt, 2016, 21(12):127003
[9] MARIANI S, MINUNNIM. Surface plasmon resonance applications in clinical analysis[J].Anal Bioanal Chem, 2014, 406(9-10):2303
[10] GUO XW. Surface plasmon resonance based biosensor technique: a review[J].J Biophotonics, 2012, 5(7):483
[11] SAFINA G. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with conventional analytical techniques. A critical review[J].Anal Chim Acta, 2012, 712:9
[12] 吴世康. 表面等离子共振传感器的原理与进展[J].影像科学与光化学, 2017, 35(1): 15
WU SK. Principle and progress for the surface plasmon resonance sensor[J].Imaging Sci Photochem, 2017, 35(1): 15
[13] LI SY, YOUNG KH, MEDEIROS LJ. Diffuse large B-cell lymphoma[J].Pathology,2018, 50(1):74
[14] PAPAGEORGIOU SG, THOMOPOULOS TP, LIASKAS A, et al. Monoclonal antibodies in the treatment of diffuse large B-cell lymphoma: moving beyond rituximab[J].Cancers, 2022, 14(8): 1917
[15] GOLDFINGER M, COOPER LD. Refractory DLBCL: challenges and treatment[J].Clin Lymphoma Myeloma Leuk, 2022, 22(3):140
[16] FUH FK, LOONEY C, LI DW, et al. Anti-CD22 and anti-CD79b antibody-drug conjugates preferentially target proliferating B cells[J].Br J Pharmacol, 2017, 174: 628
[17] 欧惠超. 基于SPR技术的传感芯片的研制及其应用[D].北京: 北京协和医学院, 2009: 1
OU HC. Development and Application of Sensor Chip Based on SPR Technology[D].Beijing: Peking Union Medical College, 2009: 1
[18] KRONVALL G, SEAL US, FINSTAD J, et al. Phylogenetic insight into evolution of mammalian Fc fragment of gamma G globulin using staphylococcal protein A[J].J Immunol, 1970, 104(1): 140