代谢分析

微透析-高效液相色谱-化学发光法动态监测6-羟基多巴帕金森病模型大鼠纹状体内多巴胺水平*

展开
  • 1.安徽医科大学药学院,炎症免疫性疾病安徽省实验室,合肥 230032;
    2.江西中医药大学现代中药制剂教育部重点实验室,南昌 330004
第一作者 Tel:(0551)65172135;E-mail:296332056@qq.com
**Tel:(0551)65172135;E-mail:qlzhang@ahmu.edu.cn

收稿日期: 2022-05-16

  网络出版日期: 2024-06-24

基金资助

*江西中医药大学现代中药制剂教育部重点实验室开放基金资助项目(201802);安徽省学术和技术带头人及后备人选学术科研活动资助经费资助项目(2018H203)

Microdialysis sampling-high performance liquid chromatography- chemiluminescence method for dynamic monitoring of dopamine levels in the striatum of 6-hydroxydopamine-induced Parkinson's disease model rats*

Expand
  • 1. Anhui Medical University, School of Pharmacy, Anhui Laboratory of Inflammatory and Immune Diseases, Hefei 230032, China;
    2. Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China

Received date: 2022-05-16

  Online published: 2024-06-24

摘要

目的: 建立动态监测自由清醒大鼠纹状体内多巴胺水平的微透析-高效液相色谱-化学发光分析法,研究天然冰片联合左旋多巴对6-羟基多巴诱导的帕金森病(PD)模型大鼠纹状体内多巴胺水平的影响。方法: 雄性SD大鼠随机分为正常组、6-羟基多巴PD模型组、左旋多巴组和天然冰片联合左旋多巴组。模型组大鼠麻醉后于右侧前脑内侧束缓慢注入4 μg·μL-1 6-羟基多巴,术后4周腹腔注射0.5 mg·kg-1阿扑吗啡,筛选旋转圈数≥7 r·min-1 (或每30 min 210 r)的大鼠作为6-羟基多巴诱导的PD模型动物。采用脑微透析活体采样联用高效液相色谱-化学发光法(HPLC-CL)监测自由清醒大鼠纹状体内多巴胺水平的动态变化。HPLC分离系统包括Shim pack ODS色谱柱(250 mm×4.6 mm, 5 μm),三水合乙酸钠缓冲液-乙腈(80∶20)作为流动相,流速为1.0 mL·min-1,柱温为37 ℃。CL检测系统包括3 μmol·L-1鲁米诺溶液、稀释1 000倍的纳米金溶液和50 μmol·L-1 Ag(Ⅲ)溶液。结果: 建立的HPLC-CL法分析多巴胺在0.05~50 ng·mL-1范围内线性关系良好,检测限为0.014 ng·mL-1。与左旋多巴组相比,天然冰片联合左旋多巴组大鼠脑微透析液中游离多巴胺药时曲线下面积(AUC0-t)从3.042 h·ng·mL-1增加到4.395 h·ng·mL-1,达峰时间(Tmax)从1.516 h缩短为1.028 h;峰浓度(Cmax)从0.435 ng·mL-1升高到0.792 ng·mL-1,更接近于正常组大鼠脑透析液中游离多巴胺水平(0.971 ng·mL-1)。结论: 天然冰片可促进左旋多巴快速入脑并转化为多巴胺,这可能与天然冰片提高左旋多巴的血脑屏障通透性有关。本研究结果可为天然冰片联合左旋多巴用药临床治疗PD提供科学依据。

本文引用格式

吴丹, 孙志军, 张俊婷, 郑琴, 程文明, 谢晋, 张群林 . 微透析-高效液相色谱-化学发光法动态监测6-羟基多巴帕金森病模型大鼠纹状体内多巴胺水平*[J]. 药物分析杂志, 2023 , 43(1) : 133 -140 . DOI: 10.16155/j.0254-1793.2023.01.16

Abstract

Objective: To establish a microdialysis sampling-high performance liquid chromatography- chemiluminescence method for dynamic monitoring of dopamine levels in the striatum of free awake rats and study the effect of natural borneol combined with levodopa on the dopamine levels in the striatum of 6-hydroxydopamine-induced Parkinson's disease (PD) model rats. Methods: Male SD rats were randomly divided into control group, 6-hydroxydopamine-induced PD model group, levodopa group and natural borneol combined with levodopa group. PD model rats were slowly injected with 4 μg·μL-1 6-hydroxydopamine in right medial forebrain bundle (MFB) after anesthesia 0.5 mg·kg-1 apomorphine was then injected intraperitoneally 4 weeks after operation, and rats with the number of rotations ≥7 r·min-1 (or 210 r 30 min) were selected as 6-hydroxydopa-induced PD model rats. High performance liquid chromatography-chemiluminescence (HPLC-CL) method combined with in vivo brain microdialysis sampling was developed for the detection of free dopamine in the striatum of free awake rats. The HPLC separation system included Shim pack ODS column (250 mm×4.6 mm, 5 μm), sodium acetate trihydrate buffer-acetonitrile (80∶20) as mobile phase, flow rate of 1.0 mL·min-1, column temperature of 37 ℃. CL detection system included 3 μmol·L-1 luminol solution, 1 000 times diluted gold nanoparticle solution and 50 μmol·L-1 Ag(Ⅲ) solution. Results: The linear range of dopamine of HPLC-CL method was 0.05-50 ng·mL-1, and the detection limit was 0.014 ng·mL-1. The pharmacokinetic results showed that compared with levodopa group, the AUC0-t of dopamine in natural borneol combined with levodopa group increased from 3.042 h·ng·mL-1 to 4.395 h·ng·mL-1, Tmax decreased from 1.516 h to 1.028 h, and the Cmax increased from 0.435 ng·mL-1 to 0.792 ng·mL-1, which was close to that of control group (0.971 ng·mL-1). Conclusion: Natural borneol promotes the rapid transformation of levodopa into the brain and conversion to dopamine, which may be due to the enhanced permeability of blood-brain barrier by natural borneol. The results of this study can provide a scientific basis for natural borneol combined with levodopa for the clinical treatment of PD.

参考文献

[1] DEXTER DT, JENNER P. Parkinson disease: from pathology to molecular disease mechanisms[J].Free Radic Biol Med, 2013, 62: 132
[2] PRINGSHEIM T, JETTE N, FROLKIS A, et al. The prevalence of Parkinson's disease: a systematic review and meta-analysis[J].Mov Disord, 2014, 29(13):1583
[3] HADDAD F, SAWALHA M, KHAWAJA Y, et al. Dopamine and levodopa prodrugs for the treatment of Parkinson's disease[J].Molecules, 2017, 23(1):23
[4] JULIEN C, HACHE G, DULAC M. The clinical meaning of levodopa equivalent daily dose in Parkinson's disease[J].Fund Clin Pharmacol, 2021, 32: 234
[5] ZHANG Q, WU D, WU J, et al. Improved blood-brain barrier distribution: effect of borneol on the brain pharmacokinetics of kaempferol in rats by in vivo microdialysis sampling[J].J Ethnopharmacol, 2015, 162: 270
[6] XU X, LI J, HAN S, et al. A novel doxorubicin loaded folic acid conjugated PAMAM modified with borneol, a nature dual-functional product of reducing PAMAM toxicity and boosting BBB penetration[J].Eur J Pharm Sci, 2016, 88: 178
[7] ZHANG QL, FU BM, ZHANG ZJ. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability[J].Drug Deliv, 2017, 24(1):1037
[8] ASWATHY B, SONY G, GOPCHANDRAN KG. Shell thickness-dependent plasmon coupling and creation of SERS hot spots in Au@Ag Core-Shell nanostructures[J].Plasmonics, 2014, 9(6):1323
[9] REZAEI B, ENSAFI AA, ZAREI L, et al. Effect of colloidal β-cyclodextrins-Fe3O4 magnetic nanoparticles on the chemiluminescence enhancement of luminol-Ag (Ⅲ) complex for rapid and sensitive determination of cysteine in human serum[J].Luminescence, 2012, 27(5):390
[10] 包新民, 舒斯云. 大鼠脑立体定位图谱[M].北京: 人民卫生出版社, 1991: 29
BAO XM, SHU SY. Stereotactic Atlas of Rat Brain[M].Beijing: People's Health Publishing House, 1991: 29
[11] HADUCH A, BROMEK E, KOT M, et al. The cytochrome P450 2D-mediated formation of serotonin from 5-methoxytryptamine in the brain in vivo: a microdialysis study[J].J Neurochem, 2015, 133(1):83
[12] WEN SH, TOSHIHIKO A, KANA U, et al. Chemically induced models of Parkinson's disease: history and perspectives for the involvement of ferroptosis[J].Front Cell Neurosci, 2020, 14: 36
[13] STEFANI A, CERRONI R, PIERANTOZZI M, et al. Deep brain stimulation in Parkinson's disease patients and routine 6-OHDA rodent models: synergies and pitfalls[J].Eur J Neurosci, 2020, 53(7):2322
[14] REA H, KIRBY B. A review of cutaneous microdialysis of inflammatory dermatoses[J].Acta Derm Venereol, 2019, 99(11):945
[15] SABROE JE, QVIST N, ELLEBÆK MB. Microdialysis in postoperative monitoring of gastrointestinal organ viability: a systematic review[J].World J Surg, 2019, 43(3):944
[16] LEENAARS CHC, FREYMANN J, JAKOBS K, et al. A systematic search and mapping review of studies on intracerebral microdialysis of amino acids, and systematized review of studies on circadian rhythms[J].J Circadian Rhythms, 2018, 16: 12
[17] WU L, ZHANG QL, ZHANG XY, et al. Pharmacokinetics and blood-brain barrier penetration of (+)-catechin and (-)-picatechin in rats by microdialysis sampling coupled to high-performance liquid chromatography with chemiluminescence detection[J].J Agric Food Chem, 2012, 60(37):9377
[18] LIN ZB, WANG H, HU LYY, et al. Simultaneous determination of N-ethylpentylone, dopamine, 5-hydroxytryptamine and their metabolites in rat brain microdialysis by liquid chromatography tandem mass spectrometry[J].Biomed Chromatogr, 2019, 33(10):e4626
[19] WU D, XIE H, LU HF, et al. Sensitive determination of norepinephrine, epinephrine, dopamine and 5-hydroxytryptamine by coupling HPLC with [Ag(HIO6)2]5- luminol chemiluminescence detection[J].Biomed Chromatogr, 2016, 30(9):1458
[20] PINTO MC, BERTON DC, DE OLIVEIRA AC, et al. Method development and validation of ursodiol and its major metabolites in human plasma by HPLC-tandem mass spectrometry[J].Clin Pharmacol, 2019, 11: 1
[21] CHEN WH, LIN Y, CHANG Y, et al. Forced degradation behavior of epidepride and development of a stability-indicating method based on liquid chromatography-mass spectrometry[J].J Food Drug Anal, 2014, 22(2):248
[22] HUANG D, JIANG QS, YANG JQ, et al. Simultaneous determination of nine analytes related to the pathogenesis of diabetic encephalopathy in diabetic rat cortex and hippocampus by HPLC-FLD[J].Biomed Chromatogr, 2018, 32(11):263
[23] 刘洋, 李敏, 侯悦, 等. 高效液相色谱-电化学法测定大鼠脑微透析液中多巴胺的方法建立及应用[J].药物分析杂志, 2013, 33(2):255
LIU Y, LI M, HOU Y, et al. HPLC-ECD determination of dopamine in rat cerebral microdialysates [J].Chin J Pharm Anal, 2013, 33(2):255
[24] QI DW, ZHANG Q, ZHOU WH, et al. Quantification of dopamine in brain microdialysates with high-performance liquid chromatography-tandem mass spectrometry[J].Anal Sci, 2016, 32(4):419
[25] GUPTA S. Advances in levodopa therapy for Parkinson disease[J].Neurology, 2016, 86(14):1
[26] HUANG LP, DENG MZ, ZHANG S, et al. β-asarone and levodopa coadministration increases striatal levels of dopamine and levodopa and improves behavioral competence in Parkinson's rat by enhancing dopa decarboxylase activity[J].Biomed Pharmacother, 2017, 94: 666
文章导航

/