成分分析

灵芝多糖肽GL-PPSQ2的热分析研究*

展开
  • 1.福建农林大学国家菌草工程技术研究中心,福州 350002;
    2.福建农林大学生命科学学院,福州 350002;
    3.福建农林大学植物保护学院,福州 350002
第一作者 Tel: 15505902007;E-mail:luohongjian14@163.com
**林占熺 Tel: (0591) 83789223;E-mail:lzxjuncao@163.com
林冬梅 Tel: (0591) 83799944;E-mail:Lindm_juncao@163.com

收稿日期: 2022-11-21

  网络出版日期: 2024-06-24

基金资助

*中央引导地方科技发展专项(2021L3008);福建省重大专项“菌草种质创新及其产业化利用关键技术研究与应用”(2021NZ0101);学科交叉融合推动菌草科学及产业高质量发展(XKJC 71202103A)

Thermal analysis of Ganoderma lucidum polysaccharide peptide GL-PPSQ2*

Expand
  • 1. National Engineering Research Center of JUNCAO Technology Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    2. College of Life science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    3. College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Received date: 2022-11-21

  Online published: 2024-06-24

摘要

目的: 研究灵芝多糖肽(GL-PPSQ2)的热解物理化学特性和热稳定性。方法: 采用热重(TG)和红外(IR)、质谱(MS)联用,在30~800 ℃升温范围为内对GL-PPSQ2进行热重(TG)和微分热重(DTG)分析;采用差示扫描量热(DSC)法,升温范围为-50~500 ℃,流量为50 mL·min-1,升温速率为10 ℃·min-1,分别在氮气和空气气氛下测定样品的变性温度和热流变化。结果: GL-PPSQ2的主要热解温度为180~450 ℃,在310 ℃(氮气)和265 ℃(空气)出现最大失重尖峰,失重过程在600 ℃左右结束,800 ℃时热解残留量分别为14.78%(氮气)和1.65%(空气)。TG-IR和TG-MS结果表明,热解产物析出量在320 ℃时达到最大峰值,小分子气体产物主要有H2O和CO2。对热处理样品残留物进行红外光谱分析主要含有多糖、碳和硫酸盐。DSC分析可知,GL-PPSQ2在200 ℃下吸热峰为失去吸附水或溶剂挥发,热解过程发生在200~500 ℃,氧化分解放热量(空气)比热解放热量大(氮气)。结论: 研究灵芝多糖肽的热解特性和热稳定性,为其研制标准物质和开发药物提供参考基础。

本文引用格式

罗虹建, 王赛贞, 王联福, 林树钱, 鲁国东, 林占熺, 林冬梅 . 灵芝多糖肽GL-PPSQ2的热分析研究*[J]. 药物分析杂志, 2023 , 43(9) : 1468 -1475 . DOI: 10.16155/j.0254-1793.2023.09.03

Abstract

Objective: To study the pyrolytic physicochemical properties and thermal stability of Ganoderma lucidum polysaccharide peptide (GL-PPSQ2). Methods: The thermogravimetric (TG) and differential thermogravimetric (DTG) analysis of GL-PPSQ2 were carried out in the temperature range of 30-800 ℃ using TG combined infrared (IR) and mass spectrometry (MS). The denaturation temperature and heat flow of GL-PPSQ2 was measured by differential scanning calorimetry (DSC) in the temperature range of -50-500 ℃ with a flow rate of 50 mL·min-1 and heating rate of 10 ℃·min-1 under nitrogen (N2) and air atmosphere, respectively. Results: The main pyrolysis temperature of GL-PPSQ2 ranged in 180-450 ℃, and there were a weightlessness peak at 310 ℃ (N2) and 265 ℃ (air). The weightlessness process ended around 600 ℃, and the residual amount of pyrolysis were 14.78% (N2) and 1.65% (air) at 800 ℃, respectively. TG-IR and TG-MS results indicated that the pyrolysis product of GL-PPSQ2 reached the highest at 320 ℃. The small molecule gas products mainly included H2O and CO2. The residue of heat-treated GL-PPSQ2 mainly contained polysaccharides, carbon and sulfate by infrared spectroscopy analysis. DSC analysis showed that the endothermic peak of GL-PPSQ2 below 200 ℃ was the loss of adsorbed water or solvent volatilization. The pyrolysis process occurred at 200 to 500 ℃, and the heat of oxidative decomposition (air) was greater than that of thermal degradation (N2). Conclusion: Studying the pyrolytic properties and thermal stability of GL-PPSQ2 may provide a reference basis for the development of reference materials and drugs.

参考文献

[1] 林志彬. 灵芝的现代研究[M]. 北京: 北京大学医学出版社, 2015
LIN ZB. Modern Research on Ganoderma lucidum[M]. Beijing: Peking University Medical Press, 2015
[2] ZHONG DD, XIE ZW, HUANG BY, et al. Ganoderma Lucidum Polysaccharide peptide alleviates hepatoteatosis via modulating bile acid metabolism dependent on FXR-SHP/FGF[J]. Cell Physiol Biochem Press GmbH Co. KG, 2018, 49(3):1204
[3] XIAN HC, LI JY, ZHANG YM, et al. Antimetastatic effects of Ganoderma lucidum polysaccharide peptide on B16-F10-luc-G5 Melanoma mice with sleep fragmentation[J]. Front Pharmacol, 2021, 12:650216p
[4] 林冬梅, 罗虹建, 王赛贞, 等. 灵芝多糖肽GL-PPSQ2结构研究及其应用[J]. 中草药.2019, 50(2):336
LIN DM, LUO HJ, WANG SZ, et al. Structure and application of Ganoderma polysaccharide peptide GL-PPSQ22 [J]. Chin Tradit Herb Drugs, 2019, 50(2):336
[5] GB/T 6425-2008p热分析术语[S]. 2008
GB/T 6425-2008p Thermal Analysis Terminology[S]. 2008
[6] 张平. 探讨热分析技术在中药鉴别中的应用价值[J]. 世界最新医学信息文摘, 2018, 18(29):153
ZHANG P. Discuss the application value of thermal analysis technology in the identification of traditional Chinese medicine[J]. World Latest Med Inf, 2018, 18(29):153
[7] 殷学毅. 阿胶、龟甲胶、鹿角胶的热分析区分鉴定[J]. 湖北中医药大学学报, 2013, 15(2):39
YIN XY. Identification of Ejiao, Tortoise-Shell Glue and Antlers Glue by thermal analysis[J]. J Hubei Univ Chin Med, 2013, 15(2):39
[8] 刘素如. 热分析技术应用于药品检验的方法探讨[J]. 名医, 2022(1):32
LIU SR. Discussion on application of thermal analysis technology to drug testing[J]. Renowned Doctor, 2022(1):32
[9] 林兰, 宁保明, 杨腊虎, 等.热分析技术在药品检验中的应用[J]. 中国新药杂志, 2014, 23(15):1734
LIN L, NING BM, YANG LH, et al. Application of thermal analysis for drug control[J]. Chin J New Drugs, 2014, 23(15):1734
[10] 王丽, 袁鹏辉, 杨德智, 等. 热分析技术在药物共晶研究中的应用[J]. 中国医药工业杂志, 2022, 53(3):290
WANG L, YUAN PH, YANG DZ, et al. Application of thermal analysis techniques in drug cocrystals[J]. Chin J Pharm, 2022, 53(3):290
[11] 李建涛, 王琪, 于雪妮, 等. 差热分析在药品食品应用中的研究进展[J]. 人参研究, 2017, 29(5):46
LI JT, WANGQ, YU XN, et al. Application of differential thermal analysis in drugs and foodstuffs[J]. J Ginseng Res, 2017, 29(5):46
[12] 邓丛静, 马欢欢, 王亮才, 等. 杏壳半纤维素的结构表征与热解产物特性[J]. 林业科学, 2019, 55(1):74
DENG CJ, MA HH, WANG LC, et al. Structure characterization and pyrolysis properties of apricot shell hemicellulose[J]. Sci Silv Sin, 2019, 55(1):74
[13] 陈菁. 虾头类肝素化合物的制备、结构表征及抗血栓活性评价[D]. 湛江:广东海洋大学, 2021
CHEN Q. Preparation, Characterization and Antithrombotic Activity Evaluation of Heparinoids from Shrimp Head[D]. Zhanjiang:Guangdong Ocean Universtiy, 2021
[14] 王新, 何玲玲, 孔玉梅, 等. 苦丁茶冬青叶多糖KPS Ⅲa的热分析研究[J]. 食品科学, 2009, 30(9):44
WANG X, HE LL, KONG YM, et al. Study on thermal decomposition of polysaccharide fraction KPS Ⅲa purified from leaves of Ilex kudingcha C. J. Tseng[J]. Food Sci, 2009, 30(9):44
[15] 王昉, 盛沈俊, 黄东, 等. 药物利培酮的晶型表征及其热稳定性研究[J]. 药物分析杂志, 2014, 34(4):673
WANG F, SHENG SJ, HUANG D, et al. Investigation on crystal structure and thermal stabilty of risperidone[J]. Chin J Pharm Anal, 2014, 34(4):673
[16] 刘琪文, 陈婷, 安琪, 等. 基于热分析技术的白桦脂醇多晶型发现与表征[J]. 医药导报, 2022, 41(5):637
LIU QW, CHENT, AN Q, et al. Discovery and characterization of Betulin Polymorphs based on thermal analysis Technology[J]. Her Med, 2022, 41(5):637
[17] 佘志刚, 胡谷平, 郭志勇, 等. 鲍鱼多糖Hal-A的热分析研究[J]. 有机化学, 2003(10):1149
SHE ZG, HU GP, GUO ZY, et al. Thermal analysis of abalone polysaccharide Hal-A[J]. Chin J Org Chem, 2003(10):1149
[18] 陈祥. 基于热重-红外-质谱技术的煤热解产物定量分析研究[D].杭州:浙江大学, 2016
CHENG X. Quantitative Analysis of Gaseous Products Evolved by Coal Combustion Using TG-FTIR-MS Technique[D].Hangzhou:Zhejiang University, 2016
[19] 刘廷国, 李斌. 水溶性壳聚糖的热分解动力学研究[J]. 华中师范大学学报(自然科学版), 2012, 46(1):65
LIU TG, LI B. Kinetic studies on the pyrolysis of a water-soluble chitosan [J].J Huazhong Norm Univ(Nat Sci), 2012, 46(1):65
[20] 翁诗甫. 傅里叶变换红外光谱分析.第2版[M]. 北京:化学工业出版社, 2010
WENG SF. FTIR Spectral Analysis.Version 2[M].Beijing:Chemical Industry Press, 2010
[21] 刘娜, 魏秀丽, 高闽光, 等. 基于傅里叶变换红外光谱技术测量气溶胶中硫酸盐的含量[J]. 红外技术, 2015, 37(1):4
LIU N, WEI XL, GAO MG, et al. Determination of sulfate content in aerosol by FTIR spectroscopy[J]. Infrared Technol, 2015, 37(1):4
[22] 姚士芹, 施文健, 陈肖云, 等. 季铵型纤维素的红外光谱及对持久性有机污染物的吸附特征[J]. 光谱学与光谱分析, 2009, 29(9):5
YAO SQ, SHI WJ, CHEN XY, et al. IR spectra of quarternary ammonium cellulose and its adsorption properties to POPs [J]. Spectrosc Spectral Anal, 2009, 29(9):5
[23] 冀晓龙, 李环宇, 韩林, 等. 木枣多糖的理化特性研究[J]. 食品科学技术学报, 2017, 35(5): 41
JI XL, LI H Y, HAN L, et al. Physicochemical study on polysaccharides from Ziziphus jujube cv. Muzao[J]. J Food Sci Technol, 2017, 35(5): 41
[24] SUVAKANTA D, NARSIMHA MP, PULAK D, et al. Optimization and characterization of purified polysaccharide from Musa sapientum L. as a pharmaceutical excipient[J]. Food Chem, 2014, 149 (8):76
[25] 华梅, 李珊珊, 曲迪, 等.人参膳食纤维的营养成分和多糖结构及热稳定性研究[J].特产研究, 2020, 42(2):20
HUA M, LI SS, QU D, et al. Study on nutritional ingredient, polysaccharide structure and thermal stability of ginseng dietary fiber[J]. Spec Wild Economic Anim Plant Res, 2020, 42(2):20
[26] 赵辉, 闫华晓, 张萌萌, 等. 海洋生物质的热解特性与动力学研究[J]. 生物技术通报, 2010 (4):135
ZHAO H, YAN HX, ZHAN MM, et al. Pyrolysis characteristics and kinetics of marine biomass[J]. Biotechnol Bull, 2010 (4):135
[27] 李梦钰, 刘会平, 贾琦, 等. 天冬多糖理化性质和流变学特性研究[J].食品与发酵工业, 2021, 47(5):48
LI MY, LIU HP, JIA Q, et al. Physicochemical properties and rheological properties of asparagi radix polysaccharide[J]. Food Ferment Ind, 2021, 47(5):48
[28] PAWAR HA, LALITHA KG. Isolation, purification and character ization of galactomannans as an excipient from Senna tora seeds[J]. Int J Biol Macromol, 2014, 65: 167
[29] KTARI N, BKHAIRIA I, NASRI M, et al. Structure and biological activities of polysaccharide purified from Senegrain seed[J]. Int J Biol Macromol, 2020, 144: 190
文章导航

/