成分分析

GC-MS法同时测定黄皮不同部位中4个挥发性成分的含量*

展开
  • 1.海南医学院 科学实验中心,海口 571199;
    2.海南医学院 药学院,海口 571199
第一作者 马寅正 Tel:15308989219;E-mail:hbykdxmyz@163.com
吴紫贝 Tel:13379933271;E-mail:1931757492@qq.com
**Tel:(0898)66892857;E-mail:xiaowen_he@126.com

收稿日期: 2022-11-24

  网络出版日期: 2024-06-24

基金资助

*海南省自然科学基金项目(822MS077,2019RC216);海南省大学生创新创业训练项目(S202311810027)

Simultaneous determination of four volatile components in different parts of Clausena lansium (Lour.) Skeels by gas chromatography-mass spectrometry*

Expand
  • 1. Public Research Center, Hainan Medical University, Haikou 571199, China;
    2. College of Pharmacy, Hainan Medical University, Haikou 571199, China

Received date: 2022-11-24

  Online published: 2024-06-24

摘要

目的: 建立快速、准确和可同时测定黄皮不同部位挥发油中4个挥发性成分(香桧烯、β-水芹烯、4-萜烯醇、β-石竹烯)含量的GC-MS分析方法。方法: 通过水蒸气蒸馏法提取黄皮叶、果皮、种子中的挥发油。GC-MS分析测定4个成分,采用DB-5MS毛细管色谱柱(30 m×0.25 mm,0.25 μm),程序升温,进样口温度250 ℃,载气为氦气,柱流量1.0 mL·min-1,进样量1.0 μL;EI源,选择性离子扫描模式,离子源温度250 ℃,接口温度280 ℃。结果: 黄皮叶、果皮、种子挥发油中4个挥发性成分和其他成分分离良好,香桧烯、β-水芹烯、4-萜烯醇和β-石竹烯分别在0.27~34.05 μg·mL-1、0.053~6.84 μg·mL-1、0.056~7.15 μg·mL-1、0.11~7.29 μg·mL-1的范围线性关系良好,加样回收率范围为99.7%~100.6%,RSD为1.3%~1.5%。样品测定结果显示黄皮不同部位中的4个挥发性成分差异最大,其中黄皮叶中β-石竹烯含量最高,为37.68~181.66 mg·mL-1,果皮中β-水芹烯含量最高,为119.71~299.10 mg·mL-1,种子中香桧烯和4-萜烯醇含量均较高,分别为136.27~286.16 mg·mL-1和70.97~103.15 mg·mL-1。不同产地也会导致黄皮成分的含量存在一定差异。结论: 本方法简便、快速、灵敏度高、专属性好,适用于黄皮中挥发性成分的测定,为黄皮不同部位的活性研究及其进一步开发利用提供了依据。

本文引用格式

马寅正, 吴紫贝, 周霞, 王岩, 隋金蕾, 孙万莹, 王元晓, 姚凯, 何小稳 . GC-MS法同时测定黄皮不同部位中4个挥发性成分的含量*[J]. 药物分析杂志, 2023 , 43(9) : 1476 -1483 . DOI: 10.16155/j.0254-1793.2023.09.04

Abstract

Objective: To establish a simple, rapid and accurate GC-MS method for simultaneous determination of four volatile components, sabinene, β-phellandrene, 4-terpineol and β-caryophyllene, in the essential oils of different parts of Clausena lansium (Lour.) Skeels. Methods: The essential oils from the leaves, peels and seeds of Clausena lansium were extracted by steam distillation, and four components were identified by GC-MS. DB-5MS capillary column (30 m×0.25 mm, 0.25 μm) was adopted. A programmed temperature was used. The temperature of injection was 250 ℃. Helium was used as the carrier gas at a flow rate of 1.0 mL·min-1. Injection volume was 1.0 μL. EI source and selective ion monitor scanning were chosen. The temperature of ion source and interface were 250 ℃ and 280 ℃, respectively. Results: An excellent seperation of sabinene, β-phellandrene, 4-terpineol and β-caryophyllene in the essential oil was gained. The good linear relationships of sabinene (0.27-34.05 μg·mL-1), β-phellandrene (0.053-6.84 μg·mL-1), 4-terpineol (0.056-7.15 μg·mL-1) and β-caryophyllene (0.11-7.29 μg·mL-1) were observed. The results of the recovery analysis were 99.7%-100.6%, with RSDs ranging from 1.3% to 1.5%. The contents of four volatile components in samples showed that there were significant differences in different parts of Clausena lansium (Lour.) Skeels. β-Caryophyllene was the highest in Clausena lansium (Lour.) Skeels leaves, with the contents of 37.68-81.66 mg·mL-1. Sabinene was the highest in Clausena lansium (Lour.) Skeels peels with contents of 119.71-299.10 mg·mL-1. In Clausena lansium (Lour.) Skeels seeds, the contents of sabinene and 4-terpineol were both high, which were 136.27-286.16 mg·mL-1 and 70.97-103.15 mg·mL-1, respectively. There were also some differences in different habitats of the same part. Conclusion: The method is simple, rapid, sensitive and specific, which is suitable for the detection of volatile components in Clausena lansium (Lour.) Skeels. It may provide a basis for the activity study and further development and utilization of various parts of Clausena lansium (Lour.) Skeels.

参考文献

[1] 中国科学院植物志编辑委员会. 中国植物志[M].北京:科学出版社, 1997:132
Editorial Committee of Flora. Chinese Academy of Sciences Flora of China [M].Beijing:Science Press, 1997:132
[2] 岳桂华, 范丽丽, 岳进. 700种中草药野外识别速查图鉴[M].北京:化学工业出版社, 2016:668
YUE GH, FAN LL, YUE J. Quick Reference Map for Field Identification of 700 Chinese Herbs [M].Beijing:Chemical Industry Press, 2016:668
[3] LIM TK. Edible medicinal and non-medicinal plants[M].Netherlands, Springer, 2012:871
[4] PRASAD KN, XIE HH, HAO J, et al. Antioxidant and anticancer activities of 8-hydroxypsoralen isolated from wampee [Clausena lansium (Lour.) Skeels] peel[J].Food Chem, 2010, 118:62
[5] SHEN DY, KUO PC, HUANG SC, et al. Constituents from the leaves of Clausena lansium and their anti-inflammatory activity[J].J Nat Med, 2017, 71:96
[6] 殷艳华, 万树青. 黄皮不同部位挥发油化学成分分析[J].广东农业科学, 2012, 39(5):99
YIN YH, WAN SQ. Study on chemical constituents of volatile oil from different part of Clausena lansium[J].Guangdong Agric Sci, 2012, 39(5):99
[7] 黄桂红, 董晓敏, 陈薇, 等. 广西黄皮叶挥发油化学成分GC-MS分析研究[J].中国药师, 2012, 15(5):601
HUANG GH, DONG XM, CHEN W, et al. Study on chemical components of volatile oil from in Clausena lansium (Lour.) Skeels leaves from Guangxi by GC-MS[J].China Pharmacist, 2012, 15(5):601
[8] 何小稳, 马寅正, 陈锦萍, 等. HS-SPME-GC-MS法分析海南产黄皮不同部位的挥发性成分[J].中草药, 2018, 49(18):4241
HE XW, MA YZ, CHEN JP, et al. Analysis and identification of volatile constituents of different parts of Clausena lansium in Hainan by HS-SPME-GC-MS[J].Chin Tradit Herb Drugs, 2018, 49(18):4241
[9] HE XW, MA YZ, YI GH, et al. Rapid and sensitive analysis of volatile components of different parts of Clausena lansium by ionic liquid based headspace gas chromatography-mass spectrometry[J].Molecules, 2019, 24(1):91
[10] HE XW, ZHANG LT, CHEN JP, et al. Correlation between chemical composition and antifungal activity of Clausena lansium essential oil against Candida spp.[J].Molecules, 2019, 24(7):1394
[11] MA YZ, WANG YX, ZHOU X, et al. The influence of the chemical composition of essential oils of Clausena lansium seeds on the growth of Candida strains[J].Sci Rep, 2021, 11(1):19666
[12] 廖雪华, 甘育鸿, 梅思, 等. 黄皮果果核挥发油对小鼠黑色素瘤B16-F10细胞增殖和凋亡的影响[J].食品研究与开发, 2019, 40(5):35
LIAO XH, GAN YH, MEI S, et al. Effect of essential oil from Wampee kernel on proliferation and apoptosis in melanoma B16-F10 cells[J].Food Res Dev, 2019, 40(5):35
[13] 彭志红, 吴科锋, 黄燕霞, 等. 黄皮果果核挥发油抗UV致小鼠皮肤光老化损伤的实验研究[J].日用化学工业, 2018, 48(6):326
PENG ZH, WU KF, HUANG YX, et al. Study on the effect of essential oil from fruit kernel of Wampee against UV-induced skin photoaging in mice[J].China Surfact Deterg Cosmet, 2018, 48(6):326
[14] 席祖卫, 王雨佳, 陈金虎, 等. 维吉尼亚雪松精油的GC-MS分析及体外药理活性研究[J].药物分析杂志, 2022, 42(2):335
XI ZW, WANG YJ, CHEN JH, et al. GC-MS analysis and in vitro study on pharmacological activity of Virginia Cedar essential oils[J].Chin J Pharm Anal, 2022, 42(2):335
[15] 袁源, 刘洋洋, 张利, 等. 气相色谱-质谱联用与主成分分析研究不同年份宜昌花椒挥发油成分[J].分析试验室, 2021, 40(11):1309
YUAN Y, LIU YY, ZHAGN L, et al. Study on the constituents analysis of volatile oil from Yichang Zanthoxylum bungeanum in different years by GC-MS combined with PCA[J].Chin J Anal Lab, 2021, 40(11):1309
[16] NIU ZL, YU CW, HE XW, et al. Salting-out assisted liquid-liquid extraction combined with gas chromatography-mass spectrometry for the determination of pyrethroid insecticides in high salinity and biological samples[J].J Pharmaceut Biomed Anal, 2017, 143:222
文章导航

/