目的: 基于平行人工膜渗透分析法(parallel artificial membrane permeability analysis,PAMPA),对化合物跨血脑屏障(blood-brain barrier,BBB)仿生系统进行优化。以氯丙嗪、氯氮平、马普替林及维拉帕米等10种化合物进行渗透性考察,建立1种快速、简便的化合物BBB渗透性考察方法。方法: 使用μFlux型化合物渗透性测定仪,以人工仿生膜为载体,将BBB涂膜液涂于仿生膜上制备人工渗透膜。对该平行人工膜模型进行方法学验证,考察其线性、重现性及重复性。以人工渗透膜模拟人的BBB,考察化合物经人工渗透膜的有效渗透速率(Pe),并与文献报道的通过96孔板测得的跨膜渗透速率(Pm)进行比较,验证人工渗透膜的准确性。结果: 该方法测得的各化合物均具有良好的线性关系(r>0.999),不同日期测定维拉帕米Pe值一致(P>0.05),该方法具有良好的重现性与重复性。对各化合物实验结果经过统计学分析,以平行人工膜测定的Pe与96孔板测定的Pm在统计学上具有一定的一致性(选择系数为1.003 63)。结论: 基于化合物跨BBB仿生系统优化PAMPA法能测定化合物跨过BBB渗透性,可为创新化合物跨BBB研究提供体外预测。
Objective: To optimize the bionic system for compound trans blood-brain barrier (BBB) based on parallel artificial membrane permeation analysis (PAMPA). The permeability of ten compounds including chlorpromazine, clozapine, maprotiline and verapamil was investigated to establish a quick and simple method for the investigation of compound BBB permeability. Methods: A μFlux compound permeability tester was used with the artificial biomimetic membrane as carrier,and the artificial permeable membrane was prepared by coating the BBB coating solution on the biomimetic membrane. The parallel artificial membrane model was verified by methodology, the linearity, reproducibility and repeatability were investigated. The artificial permeable membrane was used to simulate the human BBB, and the permeability (Pe) of the compound through the artificial permeable membrane was investigated and compared with the transmembrane permeability (Pm) measured by the 96-well plate reported in the literature to verify the accuracy of the artificial permeable membrane. Results: There was a good linear relationship in the standard curves of each compound which measured by this method(r>0.999), and the Pe values of verapamil measured on different days were consistent (P>0.05). This method had good reproducibility and repeatability. After statistical analysis of the experimental results of each compound, Pe measured by parallel artificial membrane and Pm measured by 96-well plate were statistically consistent (selection coefficient=1.003 63). Conclusion: The PAMPA bio-simulating system could measure the permeability of compounds crossing BBB, which can provide in vitro prediction for innovative compounds crossing BBB research.
[1] 王伯松, 郭安臣, 王群. 体外血脑屏障模型的研究进展及其在新药研发中的作用[J].中国医药指南, 2019, 17(14): 54
WANG BS, GUO AC, WANG Q. Research progress of blood-brain barrier model in vitro and its role in drug development[J].Guide China Med, 2019, 17(14): 54
[2] 姜波, 刘伟, 金晓玲, 等. 药物跨血脑屏障转运的实验模型研究进展[J].国际药学研究杂志, 2016, 43(4): 652
JIANG B, LIU W, JIN XL, et al. Research progress of experimental model of drug transport across blood-brain barrier[J].J Int Pharm Res, 2016, 43(4): 652
[3] 张秀琴. 中药成分血脑屏障渗透性的计算预测研究及验证[D].杭州:浙江大学, 2017
ZHANG XQ. Study and Verification of the Calculation Prediction of Blood-brain Barrier Permeability of Traditional Chinese Medicine Components[D].Hangzhou: Zhejiang University, 2017
[4] 彭浩, 于越, 朱勇喆.体外血脑屏障模型的研究进展[J].生命化学, 2019, 39(6): 1218
PENG H, YU Y, ZHU YZ.Research progress of blood-brain barrier model in vitro[J].Chem Life, 2019, 39(6): 1218
[5] KANSY M, SENNER F, GUBERNATOR K. Physicochemical high throughput screening: parallelartificial membrane permeation assay in the description of passive absorption processes[J].J Med Chem, 1998, 41(7):1007
[6] 吴一凡, 刘晖, 倪京满.平行人工膜渗透模型及其应用进展[J].药学学报, 2011, 46(8): 890
WU YF, LIU H, NI JM. Osmotic model of parallel artificial membrane and its application progress[J].Acta Pharm Sin, 2011, 46(8): 890
[7] 关皓月, 张广超, 牛剑钊, 等.平行人工膜体外渗透技术在药物一致性评价中的应用[J].中国药事, 2020, 34(8): 891
GUAN HY, ZHANG GC, NIU JZ, et al. Application of parallel artificial membrane in vitro osmosis technique in drug consistency evaluation[J].Chin Pharm Aff, 2020, 34(8): 891
[8] 李楠, 叶英杰, 杨明, 等.平行人造膜通透性测定方法(PAMPA)在吸收研究中的应用[J].中药与临床, 2011, 2(1): 28
LI N, YE YJ, YANG M, et al. Application of parallel artificial membrane permeability measurement method (PAMPA) in absorption study[J].Pharm Clin Chin Mater Med, 2011, 2(1): 28
[9] TEIXEIRA LS, CHAGAS TV, ALONSO A, et al. Biomimetic artificial membrane permeability assay over Franz cell apparatus using BCS model drugs[J].Pharmaceutics, 2020, 12(10): 988
[10] RADAN M, DJIKIC T, OBRADOVIC D, et al. Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates[J].Eur J Pharm Sci, 2022. doi: https://doi.org/10.1016/j.ejps.2021.106050
[11] DARGÓ G, VINCZE A, MÜLLER J, et al. Corneal-PAMPA: a novel, non-cell-based assay for prediction of corneal drug permeability[J].Eur J Pharm Sci, 2019, 128: 232
[12] SINKÓ B, BÁRDOS V, VESZTERGOMBI D, et al. Use of an in vitro skin parallel artificial membrane assay (Skin-PAMPA) as a screening tool to compare transdermal permeability of model compound 4-phenylethyl-resorcinol dissolved in different solvents[J].Pharmaceutics, 2021, 13(11): 1758
[13] DI L, KERNS EH, FAN K, et al. High throughput artificial membrane permeability assay for blood-brain barrier[J].Eur J Med Chem, 2003, 38(3): 223
[14] SUMMERFIELD SG, READ K, BEGLEY DJ, et al. Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction[J].J Pharmacol Exp Ther, 2007, 322(1): 205
[15] DI L, KERNS EH, BEZAR IF, et al. Comparison of blood-brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBB[J].J Pharm Sci, 2009, 98(6): 1980
[16] 中华人民共和国药典2020年版.四部[S].2020: 39
ChP 2020.Vol Ⅳ[S].2020: 39
[17] TSINMAN O, TSINMAN K, SUN N, et al. Physicochemical selectivity of the BBB microenvironment governing passive diffusion-matching with a porcine brain lipid extract artificial membrane permeability model[J].Pharm Res, 2011, 28(2): 337