代谢分析

基于三重四极杆质谱技术的三叶苷大鼠体内药动学和体内代谢研究*

  • 淳泽利 ,
  • 陈兴艳 ,
  • 郭延垒 ,
  • 高健美 ,
  • 龚其海 ,
  • 张远冬
展开
  • 1.遵义医科大学药学院,遵义 563000;
    2.遵义医科大学生命科学研究院,遵义 563000;
    3.重庆市中药研究院,重庆 400065
第一作者 淳泽利 Tel:15814019803;E-mail:chunzeli@163.com
陈兴艳 Tel:15286572259;E-mail:321428043@qq.com
** Tel:18382037398;E-mail:yuandong@zmu.edu.cn

收稿日期: 2024-06-12

  网络出版日期: 2025-08-25

基金资助

*贵州省卫生健康委科研基金项目(gzwkj2020-1-213); 遵义医科大学未来“科技菁英”人才项目(ZYSE-2022-02); 遵市科合HZ字(2022)412号; 遵市科合HZ字(2023)182号; 黔科平台人才项目([2021]1350-018)

Investigating pharmacokinetics and metabolism of trilobatin in rats using triple quadrupole mass spectrometry*

  • CHUN Ze-li ,
  • CHEN Xing-yan ,
  • GUO Yan-lei ,
  • GAO Jian-mei ,
  • GONG Qi-hai ,
  • ZHANG Yuan-dong
Expand
  • 1. School of Pharmacy, Zunyi Medical University, Zunyi 563000, China;
    2. Institute of Life Sciences, Zunyi Medical University, Zunyi 563000, China;
    3. Chongqing Academy of Chinese Material Medical, Chongqing 400065, China

Received date: 2024-06-12

  Online published: 2025-08-25

摘要

目的: 采用液相色谱-三重四极杆质谱(LC-MS/MS)技术对三叶苷在Sprague-Dawley(SD)大鼠体内药动学参数、口服生物利用度以及体内代谢物进行系统分析。方法: 采用ACQUITY UPLC BEH C18色谱柱(50 mm×2.1 mm,1.7 µm),以0.1%甲酸(A)-乙腈(B)为流动相,梯度洗脱,流速0.3 mL · min-1,柱温40 ℃,进样量2 μL。采用电喷雾离子源,负离子化方式,离子源温度150 ℃,毛细管电压-3.0 kV,去溶剂气温度500 ℃,去溶剂气流量750 L · h-1, 锥孔气体积流量150 L · h-1, 多反应监测模式(MRM)检测。三叶苷分别灌胃和静脉注射给予大鼠,收集血浆、尿液、粪便样品,甲醇沉淀蛋白后测定药物浓度,应用药动学软件和代谢物分析鉴定软件对药动学参数、代谢物进行系统分析。结果: 分别灌胃和静脉注射给予SD大鼠三叶苷(100 mg · kg-1)后,测得AUC0-t分别为(423.98±295.42)ng · h · mL-1和(90 894.75±25 472.44)ng · h · mL-1;口服生物利用度为0.46%;Cmax分别为(203.83 ± 25.88)ng · mL-1和(181 814.90±113 461.60)ng · mL-1;口服半衰期1.65 h,静脉注射半衰期3.82 h;三叶苷在肠道代谢为根皮素,并在体内发生脱糖苷化、甲基化、脱氧、水解等生物转化。结论: 对三叶苷大鼠体内药动学和体内代谢进行了初步研究,可为药效研究及后续制剂研发提供参考。

本文引用格式

淳泽利 , 陈兴艳 , 郭延垒 , 高健美 , 龚其海 , 张远冬 . 基于三重四极杆质谱技术的三叶苷大鼠体内药动学和体内代谢研究*[J]. 药物分析杂志, 2025 , 45(2) : 237 -245 . DOI: 10.16155/j.0254-1793.2024-0391

Abstract

Objective: To systematically analyze the pharmacokinetic parameters, oral bioavailability and in vivo metabolites of trilobatin in Sprague-Dawley (SD) rats using liquid chromatography - triple quadrupole mass spectrometry (LC-MS/MS). Methods: The chromatographic conditions were performed on an ACQUITY UPLC BEH C18 column (50 mm×2.1 mm, 1.7 µm) with 0.1% formic acid (mobile phase A) and acetonitrile (mobile phase B) as the mobile phase. A gradient elution program was carried out with an accompanying flow rate of 0.3 mL · min-1,a column temperature of 40 ℃, and an injection volume of 2 μL. The mass spectrometry conditions comprised an electrospray ion source in conjunction with negative ionization mode, with an ionogenic temperature of 150 ℃, acapillary voltage of -3.0 kV, and a desolvation-gas flow temperature of 500 ℃. The desolvation-gas flow rate was set at 750 L · h-1, and the conical pore gas volumetric flow rate was fixed at 150 L · h-1. The analysis was conducted in multiple reaction monitoring mode. Trilobatin was given to rats via gavage and intravenous injection, respectively. Plasma, urine and fecal samples were collected, and the drug concentration was determined after methanol precipitation of proteins. Pharmacokinetic parameters and metabolites were analyzed by pharmacokinetic software and metabolite analysis and identification software. Results: Following the administration of trilobatin to SD rats at a dose of 100 mg · kg-1 via gavage and intravenous injection, respectively. The area under the curve (AUC0-t) was found to be (423.98 ± 295.42) ng · h · mL-1 and (90 894.75 ± 25 472.44) ng · h · mL-1, respectively. The oral bioavailability was determined to be 0.46%; Cmax was (203.83±25.88) ng · mL-1 and (181 814.90±113 461.60) ng · mL-1, respectively. The oral half-life was 1.65 h, while the intravenous half-life was 3.82 h. Trilobatin was metabolized to phloretin in the intestine and underwent further biotransformation in vivo through deglycosylation, methylation, deoxygenation and hydrolysis. Conclusion: The pilot study represents a preliminary investigation into the in vivo pharmacokinetics and metabolism of trilobatin in rats, providing a foundation for further pharmacodynamics research and subsequent formulation development.

参考文献

[1] 罗颖,吴家宁,胡嘉诚,等.新型功能甜味剂——三叶苷[J].中国食品添加剂,2022,33(5):227
LUO Y,WU JN,HU JC,et al.New functional sweetene-trilobatin[J].China Food Addit,2022,33(5):227
[2] 张远冬,高健美,龚其海.超高效液相色谱-串联质谱法测定不同pH值溶液中三叶苷平衡溶解度和表观油水分配系数[J].医药导报,2021,40(9):1242
ZHANG YD,GAO JM,GONG QH.Determining the equilibrium solubility and apparent oil-water partition coefficient of trilobatin in different pH solutions by UPLC-MS/MS[J].Her Med,2021,40(9):1242
[3] YANG ML,SUN PZ,FAN ZF,et al.Safety evaluation and hypolipidemic effect of aqueous-ethanol and hot-water extracts from E Se tea in rats[J].Food Chem Toxicol,2021,156:112506
[4] LIU Y,LIU HY,XIA Y,et al.Screening and process optimization of ultrasound-assisted extraction of main antioxidants from sweet tea(Lithocarpus litseifolius [Hance] Chun)[J].Food Biosci,2021,43:101277
[5] CHEN XM,YANG WQ,WANG X,et al.Effects of natural dihydrochalcones in sweet tea(Lithocarpus polystachyus)on diabetes:a systematical review and meta-analysis of animal studies[J].Food Funct,2022,13(11):5899
[6] YI Y,YAN Y,ZAN GY,et al.Trilobatin,a novel naturally occurring food additive,amelio-rates alcoholic liver disease in mice:involvement of microbiota-gut-liver axis and Yap/Nrf2 signaling pathway[J].J Agric Food Chem,2024,doi:10.1021/acs.jafc.4c04131
[7] GAO JM,ZHANG X,SHU GT,et al.Trilobatin rescues cognitive impairment of Alzheimer’s disease by targeting HMGB1 through mediating SIRT3/SOD2 signaling pathway[J].Acta Pharmacol Sin,2022,43(10):2482
[8] PATEL DK.Biological importance and therapeutic potential of trilobatin in the management of human disorders and associated secondary complications[J].Pharmacol Res-Mod Chin Med,2022,5:100185
[9] HUANG FY,LUO LY,WU YJ,et al.Trilobatin promotes angiogenesis after cerebral ischemia-reperfusion injury via SIRT7/VEGFA signaling pathway in rats[J].Phytother Res,2022,36(7):2940
[10] KIM SC,KIM HJ,PARK GE,et al.Trilobatin ameliorates bone loss via suppression of osteoclast cell differentiation and bone resorptive function in vitro and in vivo[J].Life Sci,2021,270:119074
[11] ZHANG J,JIAO M,CHENG W,et al.Identification and functional analysis of glycosyltransferase catalyzing the synthesis of phlorizin and trilobatin in Lithocarpus polystachyus Rehd.[J].Ind Crops Prod,2023,192:116056
[12] WANG Z,GAO Z,WANG A,et al.Comparative oral and intravenous pharmacokinetics of phlorizin in rats having type 2 diabetes and in normal rats based on phase Ⅱ metabolism[J].Food Funct,2019,10(3):1582
[13] HARDMAN TC,RUTHERFOORD P,DUBREY SW,et al.Sodium-glucose co-transporter 2 inhibitors:from apple tree to ‘Sweet Pee’[J].Curr Pharm Des,2010,16(34):3830
[14] LI HR,WANG H,DONG PP,et al.Comparative characterization of the metabolites of phloretin and phloridzin in rats using UHPLC-Q-exactive orbitrap mass spectrometer[J].Arab J Chem,2024,3(17):105597
[15] WANG YT,LI Q,BI KS,et al.Bioactive flavonoids in medicinal plants:structure,activity and biological fate[J].Asian J Pharm Sci,2018,1(13):12
[16] SHANG A,LIU HY,LUO M,et al.Sweet tea(Lithocarpus polystachyus Rehd.)as a new natural source of bioactive dihydrochalcones with multiple health benefits[J].Crit Rev Food Sci Nutr,2022,62(4):917
[17] ZHANG Q,WANG L,ZHAO Y,et al.An overview of Lithocarpus polystachyus,with dihydrochalcones as natural-derived bioactive compounds[J].Food Rev Int,2023,39(8):5934
[18] DA SILVA FSI,BIZERRA PFV,MITO MS,et al.The metabolic and toxic acute effects of phloretin in the rat liver[J].Chem Biol Interact,2022,364:110054
[19] WOO SM,NGUYEN NA,SEON JE,et al.3-OH phloretin inhibits high-fat diet-induced obesity and obesity-induced inflammation by reducing macrophage infiltration into white adipose tissue[J].Molecules,2023,28(4):1851
[20] WANG L,LI ZW,ZHANG W,et al.Synthesis,crystal structure,and biological evaluation of a series of phloretin derivatives[J].Molecules,2014,19(10):16447
文章导航

/